Cargando…
Genomic prediction through machine learning and neural networks for traits with epistasis
Genomic wide selection (GWS) is one contributions of molecular genetics to breeding. Machine learning (ML) and artificial neural networks (ANN) methods are non-parameterized and can develop more accurate and parsimonious models for GWS analysis. Multivariate Adaptive Regression Splines (MARS) is con...
Autores principales: | Costa, Weverton Gomes da, Celeri, Maurício de Oliveira, Barbosa, Ivan de Paiva, Silva, Gabi Nunes, Azevedo, Camila Ferreira, Borem, Aluizio, Nascimento, Moysés, Cruz, Cosme Damião |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Research Network of Computational and Structural Biotechnology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547190/ https://www.ncbi.nlm.nih.gov/pubmed/36249559 http://dx.doi.org/10.1016/j.csbj.2022.09.029 |
Ejemplares similares
-
Machine learning and statistics to qualify environments through multi-traits in Coffea arabica
por: da Costa, Weverton Gomes, et al.
Publicado: (2021) -
Prediction of the importance of auxiliary traits using computational intelligence and machine learning: A simulation study
por: da Silva Júnior, Antônio Carlos, et al.
Publicado: (2021) -
Marker-Assisted Recurrent Selection for Pyramiding Leaf Rust and Coffee Berry Disease Resistance Alleles in Coffea arabica L.
por: Saavedra, Laura Maritza, et al.
Publicado: (2023) -
Multi-trait and multi-environment Bayesian analysis to predict the G x E interaction in flood-irrigated rice
por: da Silva Júnior, Antônio Carlos, et al.
Publicado: (2022) -
Multi-trait multi-environment models in the genetic selection of segregating soybean progeny
por: Volpato, Leonardo, et al.
Publicado: (2019)