Cargando…
Deep learning explains the biology of branched glycans from single-cell sequencing data
Glycosylation is ubiquitous and often dysregulated in disease. However, the regulation and functional significance of various types of glycosylation at cellular levels is hard to unravel experimentally. Multi-omics, single-cell measurements such as SUGAR-seq, which quantifies transcriptomes and cell...
Autores principales: | Qin, Rui, Mahal, Lara K., Bojar, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547197/ https://www.ncbi.nlm.nih.gov/pubmed/36217547 http://dx.doi.org/10.1016/j.isci.2022.105163 |
Ejemplares similares
-
Glycowork: A Python package for glycan data science and machine learning
por: Thomès, Luc, et al.
Publicado: (2021) -
LectinOracle: A Generalizable Deep Learning Model for Lectin–Glycan Binding Prediction
por: Lundstrøm, Jon, et al.
Publicado: (2021) -
Using graph convolutional neural networks to learn a representation for glycans
por: Burkholz, Rebekka, et al.
Publicado: (2021) -
Prevaccination
Glycan Markers of Response to an Influenza
Vaccine Implicate the Complement Pathway
por: Qin, Rui, et al.
Publicado: (2022) -
The Role of Fucose-Containing Glycan Motifs Across Taxonomic Kingdoms
por: Thomès, Luc, et al.
Publicado: (2021)