Cargando…
Leveraging omics data to boost the power of genome-wide association studies
Genome-wide association studies (GWASs) have successfully identified many genetic variants and risk loci for complex traits and common diseases in the last 15 years. However, these identified variants, in general, can explain only a small to moderate proportion of the heritability, thus the task of...
Autores principales: | Lin, Zhaotong, Knutson, Katherine A., Pan, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547296/ https://www.ncbi.nlm.nih.gov/pubmed/36217425 http://dx.doi.org/10.1016/j.xhgg.2022.100144 |
Ejemplares similares
-
A Knowledge-Based Weighting Framework to Boost the Power of Genome-Wide Association Studies
por: Li, Miao-Xin, et al.
Publicado: (2010) -
Leveraging biological and statistical covariates improves the detection power in epigenome-wide association testing
por: Huang, Jinyan, et al.
Publicado: (2020) -
Leveraging local ancestry to detect gene-gene interactions in genome-wide data
por: Aschard, Hugues, et al.
Publicado: (2015) -
A machine learning strategy that leverages large datasets to boost statistical power in small-scale experiments
por: Fondrie, William E., et al.
Publicado: (2020) -
Leveraging the power of pooled data for cancer outcomes research
por: Hugh-Yeun, Kiara, et al.
Publicado: (2016)