Cargando…
Re-Defining High Risk COPD with Parameter Response Mapping Based on Machine Learning Models
PURPOSE: To explore optimal threshold of FEV1% predicted value (FEV1%pre) for high-risk chronic obstructive pulmonary disease (COPD) using the parameter response mapping (PRM) based on machine learning classification model. PATIENTS AND METHODS: A total of 561 consecutive non-COPD subjects who were...
Autores principales: | Pu, Yu, Zhou, Xiuxiu, Zhang, Di, Guan, Yu, Xia, Yi, Tu, Wenting, Lu, Yang, Zhang, Weidong, Fu, Chi-Cheng, Fang, Qu, de Bock, Geertruida H, Liu, Shiyuan, Fan, Li |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547550/ https://www.ncbi.nlm.nih.gov/pubmed/36217330 http://dx.doi.org/10.2147/COPD.S369904 |
Ejemplares similares
-
Development of machine learning model to predict pulmonary function with low‐dose CT‐derived parameter response mapping in a community‐based chest screening cohort
por: Zhou, Xiuxiu, et al.
Publicado: (2023) -
Nomograms Using CT Morphological Features and Clinical Characteristics to Identify COPD in Patients with Lung Cancer: A Multicenter Study
por: Tu, Wenting, et al.
Publicado: (2023) -
Thoracic Imaging in China: Yesterday, Today, and Tomorrow
por: Fan, Li, et al.
Publicado: (2022) -
Defining disability – Re-defining policy
por: Leonardi, Matilde
Publicado: (2009) -
Defining re-implementation
por: Moyal-Smith, Rachel, et al.
Publicado: (2023)