Cargando…
Multimodal Autoencoder Predicts fNIRS Resting State From EEG Signals
In this work, we introduce a deep learning architecture for evaluation on multimodal electroencephalographic (EEG) and functional near-infrared spectroscopy (fNIRS) recordings from 40 epileptic patients. Long short-term memory units and convolutional neural networks are integrated within a multimoda...
Autores principales: | Sirpal, Parikshat, Damseh, Rafat, Peng, Ke, Nguyen, Dang Khoa, Lesage, Frédéric |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547786/ https://www.ncbi.nlm.nih.gov/pubmed/34378155 http://dx.doi.org/10.1007/s12021-021-09538-3 |
Ejemplares similares
-
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Hemodynamic changes associated with common EEG patterns in critically ill patients: Pilot results from continuous EEG-fNIRS study
por: Kassab, Ali, et al.
Publicado: (2021) -
Amplitude of fNIRS Resting-State Global Signal Is Related to EEG Vigilance Measures: A Simultaneous fNIRS and EEG Study
por: Chen, Yuxuan, et al.
Publicado: (2020) -
Multimodal Affective State Assessment Using fNIRS + EEG and Spontaneous Facial Expression
por: Sun, Yanjia, et al.
Publicado: (2020) -
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017)