Cargando…
RaVÆn: unsupervised change detection of extreme events using ML on-board satellites
Applications such as disaster management enormously benefit from rapid availability of satellite observations. Traditionally, data analysis is performed on the ground after being transferred—downlinked—to a ground station. Constraints on the downlink capabilities, both in terms of data volume and ti...
Autores principales: | Růžička, Vít, Vaughan, Anna, De Martini, Daniele, Fulton, James, Salvatelli, Valentina, Bridges, Chris, Mateo-Garcia, Gonzalo, Zantedeschi, Valentina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547912/ https://www.ncbi.nlm.nih.gov/pubmed/36209278 http://dx.doi.org/10.1038/s41598-022-19437-5 |
Ejemplares similares
-
Bayesian inference and unsupervised ML @ Four-tops
por: Alvarez de los Alvarez de San Luis, Ezequiel
Publicado: (2021) -
On board computers for satellites
por: Perry, M A
Publicado: (1972) -
An Adaptable and Unsupervised TinyML Anomaly Detection System for Extreme Industrial Environments †
por: Antonini, Mattia, et al.
Publicado: (2023) -
Semantic segmentation of methane plumes with hyperspectral machine learning models
por: Růžička, Vít, et al.
Publicado: (2023) -
LoRaWAN Meets ML: A Survey on Enhancing Performance with Machine Learning
por: Farhad, Arshad, et al.
Publicado: (2023)