Cargando…
Enhanced feature selection technique using slime mould algorithm: a case study on chemical data
Feature selection techniques are considered one of the most important preprocessing steps, which has the most significant influence on the performance of data analysis and decision making. These FS techniques aim to achieve several objectives (such as reducing classification error and minimizing the...
Autores principales: | Ewees, Ahmed A., Al-qaness, Mohammed A. A., Abualigah, Laith, Algamal, Zakariya Yahya, Oliva, Diego, Yousri, Dalia, Elaziz, Mohamed Abd |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9547998/ https://www.ncbi.nlm.nih.gov/pubmed/36245794 http://dx.doi.org/10.1007/s00521-022-07852-8 |
Ejemplares similares
-
An Electric Fish-Based Arithmetic Optimization Algorithm for Feature Selection
por: Ibrahim, Rehab Ali, et al.
Publicado: (2021) -
COVID-19 X-ray images classification based on enhanced fractional-order cuckoo search optimizer using heavy-tailed distributions
por: Yousri, Dalia, et al.
Publicado: (2021) -
Advance artificial time series forecasting model for oil production using neuro fuzzy-based slime mould algorithm
por: AlRassas, Ayman Mutahar, et al.
Publicado: (2021) -
Enhanced Slime Mould Algorithm for Multilevel Thresholding Image Segmentation Using Entropy Measures
por: Lin, Shanying, et al.
Publicado: (2021) -
COVID-19 image classification using deep features and fractional-order marine predators algorithm
por: Sahlol, Ahmed T., et al.
Publicado: (2020)