Cargando…
Correction: Predicting the growth performance of growing-finishing pigs based on net energy and digestible lysine intake using multiple regression and artificial neural networks models
Autores principales: | Wang, Li, Hu, Qile, Wang, Lu, Shi, Huangwei, Lai, Changhua, Zhang, Shuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548111/ https://www.ncbi.nlm.nih.gov/pubmed/36210468 http://dx.doi.org/10.1186/s40104-022-00778-0 |
Ejemplares similares
-
Predicting the growth performance of growing-finishing pigs based on net energy and digestible lysine intake using multiple regression and artificial neural networks models
por: Wang, Li, et al.
Publicado: (2022) -
Effects of different standardized ileal digestible lysine: net energy
proportion in growing and finishing pigs
por: Lee, Ji Hwan, et al.
Publicado: (2020) -
Effect of inclusion level and adaptation duration on digestible energy and nutrient digestibility in palm kernel meal fed to growing-finishing pigs
por: Huang, Chengfei, et al.
Publicado: (2018) -
Effects of dietary oil sources and fat extraction methods on apparent and standardized ileal digestibility of fat and fatty acids in growing pigs
por: Wang, Lu, et al.
Publicado: (2022) -
Effects of the standardized ileal digestible lysine to metabolizable energy ratio on performance and carcass characteristics of growing-finishing pigs
por: Li, Pengfei, et al.
Publicado: (2012)