Cargando…
MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning
Multiple computational approaches have been developed to improve our understanding of genetic variants. However, their ability to identify rare pathogenic variants from rare benign ones is still lacking. Using context annotations and deep learning methods, we present pathogenicity prediction models,...
Autores principales: | Li, Chang, Zhi, Degui, Wang, Kai, Liu, Xiaoming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548151/ https://www.ncbi.nlm.nih.gov/pubmed/36209109 http://dx.doi.org/10.1186/s13073-022-01120-z |
Ejemplares similares
-
PRINCESS: comprehensive detection of haplotype resolved SNVs, SVs, and methylation
por: Mahmoud, Medhat, et al.
Publicado: (2021) -
Machine-learning of complex evolutionary signals improves classification of SNVs
por: Labes, Sapir, et al.
Publicado: (2022) -
A practical method to detect SNVs and indels from whole genome and exome sequencing data
por: Shigemizu, Daichi, et al.
Publicado: (2013) -
Low incidence of SNVs and indels in trio genomes of Cas9-mediated multiplex edited sheep
por: Wang, Xiaolong, et al.
Publicado: (2018) -
Predicting the effects of frameshifting indels
por: Hu, Jing, et al.
Publicado: (2012)