Cargando…
Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation
BACKGROUND: Varicella zoster virus (VZV) is one of the eight known human herpesviruses. Initial VZV infection results in chickenpox, while viral reactivation following a period of latency manifests as shingles. Separate vaccines exist to protect against both initial infection and subsequent reactiva...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548166/ https://www.ncbi.nlm.nih.gov/pubmed/36209074 http://dx.doi.org/10.1186/s12916-022-02534-7 |
_version_ | 1784805386108272640 |
---|---|
author | Bakker, Kevin M Eisenberg, Marisa C Woods, Robert J Martinez, Micaela E |
author_facet | Bakker, Kevin M Eisenberg, Marisa C Woods, Robert J Martinez, Micaela E |
author_sort | Bakker, Kevin M |
collection | PubMed |
description | BACKGROUND: Varicella zoster virus (VZV) is one of the eight known human herpesviruses. Initial VZV infection results in chickenpox, while viral reactivation following a period of latency manifests as shingles. Separate vaccines exist to protect against both initial infection and subsequent reactivation. Controversy regarding chickenpox vaccination is contentious with most countries not including the vaccine in their childhood immunization schedule due to the hypothesized negative impact on immune-boosting, where VZV reactivation is suppressed through exogenous boosting of VZV antibodies from exposure to natural chickenpox infections. METHODS: Population-level chickenpox and shingles notifications from Thailand, a country that does not vaccinate against either disease, were previously fitted with mathematical models to estimate rates of VZV transmission and reactivation. Here, multiple chickenpox and shingles vaccination scenarios were simulated and compared to a model lacking any vaccination to analyze the long-term impacts of VZV vaccination. RESULTS: As expected, simulations suggested that an introduction of the chickenpox vaccine, at any coverage level, would reduce chickenpox incidence. However, chickenpox vaccine coverage levels above 35% would increase shingles incidence under realistic estimates of shingles coverage with the current length of protective immunity from the vaccine. A trade-off between chickenpox and shingles vaccination coverage was discovered, where mid-level chickenpox coverage levels were identified as the optimal target to minimize total zoster burden. Only in scenarios where shingles vaccine provided lifelong immunity or coverage exceeded current levels could large reductions in both chickenpox and shingles be achieved. CONCLUSIONS: The complicated nature of VZV makes it impossible to select a single vaccination scenario as universal policy. Strategies focused on reducing both chickenpox and shingles incidence, but prioritizing the latter should maximize efforts towards shingles vaccination, while slowly incorporating chickenpox vaccination. Alternatively, countries may wish to minimize VZV complications of both chickenpox and shingles, which would lead to maximizing vaccine coverage levels across both diseases. Balancing the consequences of vaccination to overall health impacts, including understanding the impact of an altered mean age of infection for both chickenpox and shingles, would need to be considered prior to any vaccine introduction. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02534-7. |
format | Online Article Text |
id | pubmed-9548166 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-95481662022-10-10 Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation Bakker, Kevin M Eisenberg, Marisa C Woods, Robert J Martinez, Micaela E BMC Med Research Article BACKGROUND: Varicella zoster virus (VZV) is one of the eight known human herpesviruses. Initial VZV infection results in chickenpox, while viral reactivation following a period of latency manifests as shingles. Separate vaccines exist to protect against both initial infection and subsequent reactivation. Controversy regarding chickenpox vaccination is contentious with most countries not including the vaccine in their childhood immunization schedule due to the hypothesized negative impact on immune-boosting, where VZV reactivation is suppressed through exogenous boosting of VZV antibodies from exposure to natural chickenpox infections. METHODS: Population-level chickenpox and shingles notifications from Thailand, a country that does not vaccinate against either disease, were previously fitted with mathematical models to estimate rates of VZV transmission and reactivation. Here, multiple chickenpox and shingles vaccination scenarios were simulated and compared to a model lacking any vaccination to analyze the long-term impacts of VZV vaccination. RESULTS: As expected, simulations suggested that an introduction of the chickenpox vaccine, at any coverage level, would reduce chickenpox incidence. However, chickenpox vaccine coverage levels above 35% would increase shingles incidence under realistic estimates of shingles coverage with the current length of protective immunity from the vaccine. A trade-off between chickenpox and shingles vaccination coverage was discovered, where mid-level chickenpox coverage levels were identified as the optimal target to minimize total zoster burden. Only in scenarios where shingles vaccine provided lifelong immunity or coverage exceeded current levels could large reductions in both chickenpox and shingles be achieved. CONCLUSIONS: The complicated nature of VZV makes it impossible to select a single vaccination scenario as universal policy. Strategies focused on reducing both chickenpox and shingles incidence, but prioritizing the latter should maximize efforts towards shingles vaccination, while slowly incorporating chickenpox vaccination. Alternatively, countries may wish to minimize VZV complications of both chickenpox and shingles, which would lead to maximizing vaccine coverage levels across both diseases. Balancing the consequences of vaccination to overall health impacts, including understanding the impact of an altered mean age of infection for both chickenpox and shingles, would need to be considered prior to any vaccine introduction. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12916-022-02534-7. BioMed Central 2022-10-08 /pmc/articles/PMC9548166/ /pubmed/36209074 http://dx.doi.org/10.1186/s12916-022-02534-7 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Article Bakker, Kevin M Eisenberg, Marisa C Woods, Robert J Martinez, Micaela E Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation |
title | Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation |
title_full | Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation |
title_fullStr | Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation |
title_full_unstemmed | Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation |
title_short | Identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation |
title_sort | identifying optimal vaccination scenarios to reduce varicella zoster virus transmission and reactivation |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548166/ https://www.ncbi.nlm.nih.gov/pubmed/36209074 http://dx.doi.org/10.1186/s12916-022-02534-7 |
work_keys_str_mv | AT bakkerkevinm identifyingoptimalvaccinationscenariostoreducevaricellazostervirustransmissionandreactivation AT eisenbergmarisac identifyingoptimalvaccinationscenariostoreducevaricellazostervirustransmissionandreactivation AT woodsrobertj identifyingoptimalvaccinationscenariostoreducevaricellazostervirustransmissionandreactivation AT martinezmicaelae identifyingoptimalvaccinationscenariostoreducevaricellazostervirustransmissionandreactivation |