Cargando…
Modulation of bioactive calcium phosphate micro/nanoparticle size and shape during in situ synthesis of photo-crosslinkable gelatin methacryloyl based nanocomposite hydrogels for 3D bioprinting and tissue engineering
BACKGROUND: The gelatin-methacryloyl (GelMA) polymer suffers shape fidelity and structural stability issues during 3D bioprinting for bone tissue engineering while homogeneous mixing of reinforcing nanoparticles is always under debate. METHOD: In this study, amorphous calcium phosphates micro/nanopa...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548207/ https://www.ncbi.nlm.nih.gov/pubmed/36209133 http://dx.doi.org/10.1186/s40824-022-00301-6 |
Sumario: | BACKGROUND: The gelatin-methacryloyl (GelMA) polymer suffers shape fidelity and structural stability issues during 3D bioprinting for bone tissue engineering while homogeneous mixing of reinforcing nanoparticles is always under debate. METHOD: In this study, amorphous calcium phosphates micro/nanoparticles (CNP) incorporated GelMA is synthesized by developing specific sites for gelatin structure-based nucleation and stabilization in a one-pot processing. The process ensures homogenous distribution of CNPs while different concentrations of gelatin control their growth and morphologies. After micro/nanoparticles synthesis in the gelatin matrix, methacrylation is carried out to prepare homogeneously distributed CNP-reinforced gelatin methacryloyl (CNP GelMA) polymer. After synthesis of CNP and CNP GelMA gel, the properties of photo-crosslinked 3D bioprinting scaffolds were compared with those of the conventionally fabricated ones. RESULTS: The shape (spindle to spherical) and size (1.753 μm to 296 nm) of the micro/nanoparticles in the GelMA matrix are modulated by adjusting the gelatin concentrations during the synthesis. UV cross-linked CNP GelMA (using Irgacure 2955) has significantly improved mechanical (three times compressive strength), 3D printability (160 layers, 2 cm self-standing 3D printed height) and biological properties (cell supportiveness with osteogenic differentiation). The photo-crosslinking becomes faster due to better methacrylation, facilitating continuous 3D bioprinting or printing. CONCLUSION: For 3D bioprinting using GelMA like photo cross-linkable polymers, where structural stability and homogeneous control of nanoparticles are major concerns, CNP GelMA is beneficial for even bone tissue regeneration within short period. GRAPHICAL ABSTRACT: [Image: see text] SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40824-022-00301-6. |
---|