Cargando…

An ethyl acetate fraction of flavonoids from Polygonum hydropiper L. exhibits an anti-inflammatory activity in PCV2-infected porcine alveolar macrophages via PI3K/Akt and NF-κB pathways

Porcine circovirus type 2 (PCV2) widely exists in swine production systems causing porcine circovirus diseases (PCVD) which is associated with significant economic losses. Polygonum hydropiper L. was used as a traditional Chinese medicine to treat a variety of diseases. This study was carried out to...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Chun-Zhi, Hu, Wen-Yue, Song, Man-ling, Wei, Ying-Yi, Hu, Ting-Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Urmia University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548224/
https://www.ncbi.nlm.nih.gov/pubmed/36320309
http://dx.doi.org/10.30466/vrf.2021.137675.3070
Descripción
Sumario:Porcine circovirus type 2 (PCV2) widely exists in swine production systems causing porcine circovirus diseases (PCVD) which is associated with significant economic losses. Polygonum hydropiper L. was used as a traditional Chinese medicine to treat a variety of diseases. This study was carried out to investigate anti-inflammatory activity of the ethyl acetate fraction of flavonoids from Polygonum hydropiper L. (FEA) in PCV2-induced porcine alveolar macrophages (3D4/2 cell line). The production of oxygen species (ROS) and the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-8 (IL-8) were detected to evaluate the anti-inflammatory activities of FEA. The translocation of nuclear factor-kappa B (NF-κB) and the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) signaling pathways were investigated to document the potential anti-inflammatory mechanisms. In PCV2 induced 3D4/2 cells, FEA treatment significantly reduced the production of ROS, and sharply down-regulated the levels of TNF-α, IL-1β and IL-8 in both secretion and mRNA expression level. The FEA also decreased the mRNA expression of Akt and NF-κB p65, reduced the transfer of p65 to nuclear, and inhibited the activation of PI3K/Akt signaling pathway. The findings suggest that FEA exhibited an anti-inflammatory activity in vitro and could be used as a candidate in treatment of inflammation induced by PCV2 infection.