Cargando…
Development and validation of prediction models for hypertension risks: A cross-sectional study based on 4,287,407 participants
OBJECTIVE: To develop an optimal screening model to identify the individuals with a high risk of hypertension in China by comparing tree-based machine learning models, such as classification and regression tree, random forest, adaboost with a decision tree, extreme gradient boosting decision tree, a...
Autores principales: | Ji, Weidong, Zhang, Yushan, Cheng, Yinlin, Wang, Yushan, Zhou, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548597/ https://www.ncbi.nlm.nih.gov/pubmed/36225955 http://dx.doi.org/10.3389/fcvm.2022.928948 |
Ejemplares similares
-
Development and validation of a carotid atherosclerosis risk prediction model based on a Chinese population
por: Huang, Guoqing, et al.
Publicado: (2022) -
Barriers to Treatment and Control of Hypertension among Hypertensive Participants: A Community-Based Cross-sectional Mixed Method Study in Municipalities of Kathmandu, Nepal
por: Devkota, Surya, et al.
Publicado: (2016) -
Prediction model of obstructive sleep apnea–related hypertension: Machine learning–based development and interpretation study
por: Shi, Yewen, et al.
Publicado: (2022) -
Migraine and the risk of cardiovascular and cerebrovascular events: a meta-analysis of 16 cohort studies including 1 152 407 subjects
por: Mahmoud, Ahmed N, et al.
Publicado: (2018) -
Can anthropometric indices predict the chance of hypertension? A multicentre cross-sectional study in Iran
por: Akbari-khezrabadi, Ali, et al.
Publicado: (2022)