Cargando…
Analyzing time-to-first-spike coding schemes: A theoretical approach
Spiking neural networks (SNNs) using time-to-first-spike (TTFS) codes, in which neurons fire at most once, are appealing for rapid and low power processing. In this theoretical paper, we focus on information coding and decoding in those networks, and introduce a new unifying mathematical framework t...
Autores principales: | Bonilla, Lina, Gautrais, Jacques, Thorpe, Simon, Masquelier, Timothée |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548614/ https://www.ncbi.nlm.nih.gov/pubmed/36225737 http://dx.doi.org/10.3389/fnins.2022.971937 |
Ejemplares similares
-
Optimal Localist and Distributed Coding of Spatiotemporal Spike Patterns Through STDP and Coincidence Detection
por: Masquelier, Timothée, et al.
Publicado: (2018) -
Spike Timing Dependent Plasticity Finds the Start of Repeating Patterns in Continuous Spike Trains
por: Masquelier, Timothée, et al.
Publicado: (2008) -
Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity
por: Masquelier, Timothée, et al.
Publicado: (2007) -
Rapid neural coding in the mouse retina with the first wave of spikes
por: Portelli, Geoffrey, et al.
Publicado: (2014) -
SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron
por: Mozafari, Milad, et al.
Publicado: (2019)