Cargando…
Epileptic seizure prediction using successive variational mode decomposition and transformers deep learning network
As one of the most common neurological disorders, epilepsy causes great physical and psychological damage to the patients. The long-term recurrent and unprovoked seizures make the prediction necessary. In this paper, a novel approach for epileptic seizure prediction based on successive variational m...
Autores principales: | Wu, Xiao, Zhang, Tinglin, Zhang, Limei, Qiao, Lishan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9548615/ https://www.ncbi.nlm.nih.gov/pubmed/36225738 http://dx.doi.org/10.3389/fnins.2022.982541 |
Ejemplares similares
-
An end-to-end seizure prediction approach using long short-term memory network
por: Wu, Xiao, et al.
Publicado: (2023) -
Epileptic Seizure Detection Based on Variational Mode Decomposition and Deep Forest Using EEG Signals
por: Liu, Xiang, et al.
Publicado: (2022) -
Capturing the power of seizures: an empirical mode decomposition analysis of epileptic activity in the mouse hippocampus
por: Molnár, László, et al.
Publicado: (2023) -
Epileptic seizure classifications using empirical mode decomposition and its derivative
por: Karabiber Cura, Ozlem, et al.
Publicado: (2020) -
Epileptic seizure detection with deep EEG features by convolutional neural network and shallow classifiers
por: Zeng, Wei, et al.
Publicado: (2023)