Cargando…
Clinical parameters predict the effect of bilateral subthalamic stimulation on dynamic balance parameters during gait in Parkinson's disease
We investigated the effect of deep brain stimulation on dynamic balance during gait in Parkinson's disease with motion sensor measurements and predicted their values from disease-related factors. We recruited twenty patients with Parkinson's disease treated with bilateral subthalamic stimu...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549153/ https://www.ncbi.nlm.nih.gov/pubmed/36226087 http://dx.doi.org/10.3389/fneur.2022.917187 |
Sumario: | We investigated the effect of deep brain stimulation on dynamic balance during gait in Parkinson's disease with motion sensor measurements and predicted their values from disease-related factors. We recruited twenty patients with Parkinson's disease treated with bilateral subthalamic stimulation for at least 12 months and 24 healthy controls. Six monitors with three-dimensional gyroscopes and accelerometers were placed on the chest, the lumbar region, the two wrists, and the shins. Patients performed the instrumented Timed Up and Go test in stimulation OFF, stimulation ON, and right- and left-sided stimulation ON conditions. Gait parameters and dynamic balance parameters such as double support, peak turn velocity, and the trunk's range of motion and velocity in three dimensions were analyzed. Age, disease duration, the time elapsed after implantation, the Hoehn-Yahr stage before and after the operation, the levodopa, and stimulation responsiveness were reported. We individually calculated the distance values of stimulation locations from the subthalamic motor center in three dimensions. Sway values of static balance were collected. We compared the gait parameters in the OFF and stimulation ON states and controls. With cluster analysis and a machine-learning-based multiple regression method, we explored the predictive clinical factors for each dynamic balance parameter (with age as a confounder). The arm movements improved the most among gait parameters due to stimulation and the horizontal and sagittal trunk movements. Double support did not change after switching on the stimulation on the group level and did not differ from control values. Individual changes in double support and horizontal range of trunk motion due to stimulation could be predicted from the most disease-related factors and the severity of the disease; the latter also from the stimulation-related changes in the static balance parameters. Physiotherapy should focus on double support and horizontal trunk movements when treating patients with subthalamic deep brain stimulation. |
---|