Cargando…
A Machine Learning Model of Chemical Shifts for Chemically and Structurally Diverse Molecular Solids
[Image: see text] Nuclear magnetic resonance (NMR) chemical shifts are a direct probe of local atomic environments and can be used to determine the structure of solid materials. However, the substantial computational cost required to predict accurate chemical shifts is a key bottleneck for NMR cryst...
Autores principales: | Cordova, Manuel, Engel, Edgar A., Stefaniuk, Artur, Paruzzo, Federico, Hofstetter, Albert, Ceriotti, Michele, Emsley, Lyndon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9549463/ https://www.ncbi.nlm.nih.gov/pubmed/36237276 http://dx.doi.org/10.1021/acs.jpcc.2c03854 |
Ejemplares similares
-
Chemical shifts in molecular solids by machine learning
por: Paruzzo, Federico M., et al.
Publicado: (2018) -
Bayesian probabilistic assignment of chemical shifts in organic solids
por: Cordova, Manuel, et al.
Publicado: (2021) -
De Novo Crystal Structure Determination
from Machine Learned Chemical Shifts
por: Balodis, Martins, et al.
Publicado: (2022) -
Chemical
Shift-Dependent Interaction Maps in Molecular
Solids
por: Cordova, Manuel, et al.
Publicado: (2023) -
Rapid Structure Determination of Molecular Solids
Using Chemical Shifts Directed by Unambiguous Prior Constraints
por: Hofstetter, Albert, et al.
Publicado: (2019)