Cargando…
Cost-effective micro-CT system for non-destructive testing of titanium 3D printed medical components
Micro-CT imaging can be used as an effective method for non-destructive testing (NDT) of metal 3D printed parts–including titanium biomedical components fabricated using laser powder-bed-fusion (LPBF). Unfortunately, the cost of commercially available micro-CT scanners renders routine NDT for biomed...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550031/ https://www.ncbi.nlm.nih.gov/pubmed/36215251 http://dx.doi.org/10.1371/journal.pone.0275732 |
Sumario: | Micro-CT imaging can be used as an effective method for non-destructive testing (NDT) of metal 3D printed parts–including titanium biomedical components fabricated using laser powder-bed-fusion (LPBF). Unfortunately, the cost of commercially available micro-CT scanners renders routine NDT for biomedical applications prohibitively expensive. This study describes the design, manufacturing, and implementation of a cost-effective scanner tailored for NDT of medium-size titanium 3D printed biomedical components. The main elements of the scanner; which include a low-energy (80 kVp) portable x-ray unit, and a low-cost lens-coupled detector; can be acquired with a budget less than $ 11000 USD. The low-cost detector system uses a rare-earth phosphor screen, lens-coupled to a dSLR camera (Nikon D800) in a front-lit tilted configuration. This strategy takes advantage of the improved light-sensitivity of modern full-frame CMOS camera sensors and minimizes source-to-detector distance to maximize x-ray flux. The imaging performance of the system is characterized using a comprehensive CT quality-assurance phantom, and two titanium 3D-printed test specimens. Results show that the cost-effective scanner can survey the porosity and cracks in titanium parts with thicknesses of up to 13 mm of solid metal. Quantitatively, the scanner produced geometrically stable reconstructions, with a voxel size of 118 μm, and noise levels under 55 HU. The cost-effective scanner was able to estimate the porosity of a 17 mm diameter titanium 3D-printed cylindrical lattice structure, with a 0.3% relative error. The proposed scanner will facilitate the implementation of titanium LPBF-printed components for biomedical applications by incorporating routine cost-effective NDT as part of the process control and validation steps of medical-device quality-management systems. By reducing the cost of the x-ray detector and shielding, the scan cost will be commensurate with the overall cost of the validated component. |
---|