Cargando…

Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears?

BACKGROUND/PURPOSE: The use of MRI as a diagnostic tool has gained popularity in the field of orthopedics. Although 3-dimensional (3D) MRI offers more intuitive visualization and can better facilitate treatment planning than 2-dimensional (2D) MRI, manual segmentation for 3D visualization is time-co...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Hyojune, Shin, Keewon, Kim, Hoyeon, Lee, Eui-sup, Chung, Seok Won, Koh, Kyoung Hwan, Kim, Namkug
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550047/
https://www.ncbi.nlm.nih.gov/pubmed/36215291
http://dx.doi.org/10.1371/journal.pone.0274075
_version_ 1784805803456200704
author Kim, Hyojune
Shin, Keewon
Kim, Hoyeon
Lee, Eui-sup
Chung, Seok Won
Koh, Kyoung Hwan
Kim, Namkug
author_facet Kim, Hyojune
Shin, Keewon
Kim, Hoyeon
Lee, Eui-sup
Chung, Seok Won
Koh, Kyoung Hwan
Kim, Namkug
author_sort Kim, Hyojune
collection PubMed
description BACKGROUND/PURPOSE: The use of MRI as a diagnostic tool has gained popularity in the field of orthopedics. Although 3-dimensional (3D) MRI offers more intuitive visualization and can better facilitate treatment planning than 2-dimensional (2D) MRI, manual segmentation for 3D visualization is time-consuming and lacks reproducibility. Recent advancements in deep learning may provide a solution to this problem through the process of automatic segmentation. The purpose of this study was to develop automated semantic segmentation on 2D MRI images of rotator cuff tears by using a convolutional neural network to visualize 3D models of related anatomic structures. METHODS: MRI scans from 56 patients with rotator cuff tears (T2 Linear Coronal MRI; 3.0T, 512 mm × 512 mm, and 2.5-mm slice thickness) were collected. Segmentation masks for the cuff tendon, muscle, bone, and cartilage were obtained by four orthopedic shoulder surgeons, and these data were revised by a shoulder surgeon with more than 20 years’ experience. We performed 2D and 3D segmentation using nnU-Net with secondary labels for reducing false positives. Final validation was performed in an external T2 MRI dataset (10 cases) acquired from other institutions. The Dice Similarity Coefficient (DSC) was used to validate segmentation quality. RESULTS: The use of 3D nnU-Net with secondary labels to reduce false positives achieved satisfactory results, even with a limited amount of data. The DSCs (mean ± SD) of the cuff tendon, muscle, bone, and cartilage in the internal test set were 80.7% ± 9.7%, 85.8% ± 8.6%, 97.8% ± 0.6%, and 80.8% ± 15.1%, respectively. In external validation, the DSC of the tendon segmentation was 82.74±5.2%. CONCLUSION: Automated segmentation using 3D U-Net produced acceptable accuracy and reproducibility. This method could provide rapid, intuitive visualization that can significantly facilitate the diagnosis and treatment planning in patients with rotator cuff tears.
format Online
Article
Text
id pubmed-9550047
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-95500472022-10-11 Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears? Kim, Hyojune Shin, Keewon Kim, Hoyeon Lee, Eui-sup Chung, Seok Won Koh, Kyoung Hwan Kim, Namkug PLoS One Research Article BACKGROUND/PURPOSE: The use of MRI as a diagnostic tool has gained popularity in the field of orthopedics. Although 3-dimensional (3D) MRI offers more intuitive visualization and can better facilitate treatment planning than 2-dimensional (2D) MRI, manual segmentation for 3D visualization is time-consuming and lacks reproducibility. Recent advancements in deep learning may provide a solution to this problem through the process of automatic segmentation. The purpose of this study was to develop automated semantic segmentation on 2D MRI images of rotator cuff tears by using a convolutional neural network to visualize 3D models of related anatomic structures. METHODS: MRI scans from 56 patients with rotator cuff tears (T2 Linear Coronal MRI; 3.0T, 512 mm × 512 mm, and 2.5-mm slice thickness) were collected. Segmentation masks for the cuff tendon, muscle, bone, and cartilage were obtained by four orthopedic shoulder surgeons, and these data were revised by a shoulder surgeon with more than 20 years’ experience. We performed 2D and 3D segmentation using nnU-Net with secondary labels for reducing false positives. Final validation was performed in an external T2 MRI dataset (10 cases) acquired from other institutions. The Dice Similarity Coefficient (DSC) was used to validate segmentation quality. RESULTS: The use of 3D nnU-Net with secondary labels to reduce false positives achieved satisfactory results, even with a limited amount of data. The DSCs (mean ± SD) of the cuff tendon, muscle, bone, and cartilage in the internal test set were 80.7% ± 9.7%, 85.8% ± 8.6%, 97.8% ± 0.6%, and 80.8% ± 15.1%, respectively. In external validation, the DSC of the tendon segmentation was 82.74±5.2%. CONCLUSION: Automated segmentation using 3D U-Net produced acceptable accuracy and reproducibility. This method could provide rapid, intuitive visualization that can significantly facilitate the diagnosis and treatment planning in patients with rotator cuff tears. Public Library of Science 2022-10-10 /pmc/articles/PMC9550047/ /pubmed/36215291 http://dx.doi.org/10.1371/journal.pone.0274075 Text en © 2022 Kim et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Kim, Hyojune
Shin, Keewon
Kim, Hoyeon
Lee, Eui-sup
Chung, Seok Won
Koh, Kyoung Hwan
Kim, Namkug
Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears?
title Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears?
title_full Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears?
title_fullStr Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears?
title_full_unstemmed Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears?
title_short Can deep learning reduce the time and effort required for manual segmentation in 3D reconstruction of MRI in rotator cuff tears?
title_sort can deep learning reduce the time and effort required for manual segmentation in 3d reconstruction of mri in rotator cuff tears?
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550047/
https://www.ncbi.nlm.nih.gov/pubmed/36215291
http://dx.doi.org/10.1371/journal.pone.0274075
work_keys_str_mv AT kimhyojune candeeplearningreducethetimeandeffortrequiredformanualsegmentationin3dreconstructionofmriinrotatorcufftears
AT shinkeewon candeeplearningreducethetimeandeffortrequiredformanualsegmentationin3dreconstructionofmriinrotatorcufftears
AT kimhoyeon candeeplearningreducethetimeandeffortrequiredformanualsegmentationin3dreconstructionofmriinrotatorcufftears
AT leeeuisup candeeplearningreducethetimeandeffortrequiredformanualsegmentationin3dreconstructionofmriinrotatorcufftears
AT chungseokwon candeeplearningreducethetimeandeffortrequiredformanualsegmentationin3dreconstructionofmriinrotatorcufftears
AT kohkyounghwan candeeplearningreducethetimeandeffortrequiredformanualsegmentationin3dreconstructionofmriinrotatorcufftears
AT kimnamkug candeeplearningreducethetimeandeffortrequiredformanualsegmentationin3dreconstructionofmriinrotatorcufftears