Cargando…

An Unsupervised 3D Image Registration Network for Brain MRI Deformable Registration

In recent years, deep learning has made successful applications and remarkable achievements in the field of medical image registration, and the method of medical image registration based on deep learning has become the current research hotspot. However, the performance of convolutional neural networ...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Min, Ren, Guanyu, Zhang, Shizheng, Zheng, Qian, Niu, Huiyang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550485/
https://www.ncbi.nlm.nih.gov/pubmed/36226240
http://dx.doi.org/10.1155/2022/9246378
Descripción
Sumario:In recent years, deep learning has made successful applications and remarkable achievements in the field of medical image registration, and the method of medical image registration based on deep learning has become the current research hotspot. However, the performance of convolutional neural networks may not be fully exploited due to neglect of spatial relationships between distant locations in the image and incomplete updates of network parameters. To avoid this phenomenon, MHNet, a multiscale hierarchical deformable registration network for 3D brain MR images, was proposed in this paper. This network was an unsupervised end-to-end convolutional neural network. After training, the dense displacement vector field can be predicted almost in real-time for the unseen input image pairs, which saves a lot of time compared with the traditional algorithms of independent iterative optimization for each pair of images. On the basis of the encoder-decoder structure, this network introduced the improved Inception module for multiscale feature extraction and expanding the receptive field and the hierarchical forecast structure to promote the update of the parameters of the middle layers, which achieved the best performance on the augmented public dataset compared with the existing four excellent registration methods.