Cargando…

Metformin Exhibits an Attractive Antineoplastic Effect on Human Endometrial Cancer by Regulating the Hippo Signaling Pathway

Metformin, the first-line oral antidiabetic medicine, has shown great antineoplastic potential in various cancer types, despite an unclear mechanism. This study aimed to elucidate the possible mechanism of metformin as a chemotherapy agent with less reproductive and genetic toxicity in human endomet...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Meng, Zhang, Qiulin, Li, Yuehan, Jin, Lei, Fang, Zishui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550502/
https://www.ncbi.nlm.nih.gov/pubmed/36226249
http://dx.doi.org/10.1155/2022/5824617
Descripción
Sumario:Metformin, the first-line oral antidiabetic medicine, has shown great antineoplastic potential in various cancer types, despite an unclear mechanism. This study aimed to elucidate the possible mechanism of metformin as a chemotherapy agent with less reproductive and genetic toxicity in human endometrial cancer. The type I endometrial carcinoma cell lines Ishikawa and RL95-2 were treated with metformin. Cell functions, such as proliferation, migration, and invasion, were analyzed. Flow cytometry was performed for cell cycle and apoptosis analyses. Simultaneously, RT-qPCR and western blotting were performed to explore the possible mechanism. Moreover, YAP1 knockout Ishikawa cells were established via lentivirus to demonstrate the underlying mechanism. The results showed that metformin mediated Ishikawa and RL95-2 cell growth inhibition in a dose- and time-dependent manner. The IC50 values of metformin in Ishikawa and RL95-2 cells were 10 mM and 8 mM, respectively. The migration and invasion abilities were also inhibited in the metformin-treated group using wound healing assays and transwell migration and invasion assays, and Ishikawa and RL95-2 cells were arrested in the G1 or G2 phase, respectively. Moreover, the cell proportions of cells in both early and late apoptosis stages were dramatically elevated when treated with metformin, as was the ratio of Bax/Bcl-2 expression. Additionally, the expression levels of YAP1 mRNA and protein in the treatment group were much lower than those in the control group. The cellular behaviors of YAP1 knockout Ishikawa cells were similar to those in the metformin-treated group. Our results demonstrated that it is an attractive alternative to cytotoxic chemotherapy in human endometrial cancer, and YAP of the Hippo pathway may be a potential molecular target. This study provides novel ideas for the adjuvant therapy of endometrial cancer patients, especially for women with strong fertility desires and demands.