Cargando…
Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro
Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550654/ https://www.ncbi.nlm.nih.gov/pubmed/36238899 http://dx.doi.org/10.1016/j.isci.2022.105197 |
_version_ | 1784805927977746432 |
---|---|
author | Gaggi, Giulia Di Credico, Andrea Guarnieri, Simone Mariggiò, Maria Addolorata Ballerini, Patrizia Di Baldassarre, Angela Ghinassi, Barbara |
author_facet | Gaggi, Giulia Di Credico, Andrea Guarnieri, Simone Mariggiò, Maria Addolorata Ballerini, Patrizia Di Baldassarre, Angela Ghinassi, Barbara |
author_sort | Gaggi, Giulia |
collection | PubMed |
description | Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and can overcome the mesenchymal commitment. Here, we demonstrated that hFM-MSCs can give rise to spinal motor neurons by the sequential exposure to specific factors that induced a neuralization, caudalization and ventralization of undifferentiated cells, leading to a gradual gene and protein upregulation of early and late MN markers. Also, spontaneous electrical activity (spikes and bursts) was recorded. Finally, when co-cultured with myotubes, differentiated MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle cell contractions. These data demonstrated the hFM-MSCs can generate a mature and functional MN population that may represent an alternative source for regenerative medicine, disease modeling or drug screening. |
format | Online Article Text |
id | pubmed-9550654 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-95506542022-10-12 Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro Gaggi, Giulia Di Credico, Andrea Guarnieri, Simone Mariggiò, Maria Addolorata Ballerini, Patrizia Di Baldassarre, Angela Ghinassi, Barbara iScience Article Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and can overcome the mesenchymal commitment. Here, we demonstrated that hFM-MSCs can give rise to spinal motor neurons by the sequential exposure to specific factors that induced a neuralization, caudalization and ventralization of undifferentiated cells, leading to a gradual gene and protein upregulation of early and late MN markers. Also, spontaneous electrical activity (spikes and bursts) was recorded. Finally, when co-cultured with myotubes, differentiated MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle cell contractions. These data demonstrated the hFM-MSCs can generate a mature and functional MN population that may represent an alternative source for regenerative medicine, disease modeling or drug screening. Elsevier 2022-09-23 /pmc/articles/PMC9550654/ /pubmed/36238899 http://dx.doi.org/10.1016/j.isci.2022.105197 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Gaggi, Giulia Di Credico, Andrea Guarnieri, Simone Mariggiò, Maria Addolorata Ballerini, Patrizia Di Baldassarre, Angela Ghinassi, Barbara Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro |
title | Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro |
title_full | Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro |
title_fullStr | Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro |
title_full_unstemmed | Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro |
title_short | Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro |
title_sort | human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550654/ https://www.ncbi.nlm.nih.gov/pubmed/36238899 http://dx.doi.org/10.1016/j.isci.2022.105197 |
work_keys_str_mv | AT gaggigiulia humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro AT dicredicoandrea humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro AT guarnierisimone humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro AT mariggiomariaaddolorata humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro AT ballerinipatrizia humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro AT dibaldassarreangela humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro AT ghinassibarbara humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro |