Cargando…

Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro

Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and...

Descripción completa

Detalles Bibliográficos
Autores principales: Gaggi, Giulia, Di Credico, Andrea, Guarnieri, Simone, Mariggiò, Maria Addolorata, Ballerini, Patrizia, Di Baldassarre, Angela, Ghinassi, Barbara
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550654/
https://www.ncbi.nlm.nih.gov/pubmed/36238899
http://dx.doi.org/10.1016/j.isci.2022.105197
_version_ 1784805927977746432
author Gaggi, Giulia
Di Credico, Andrea
Guarnieri, Simone
Mariggiò, Maria Addolorata
Ballerini, Patrizia
Di Baldassarre, Angela
Ghinassi, Barbara
author_facet Gaggi, Giulia
Di Credico, Andrea
Guarnieri, Simone
Mariggiò, Maria Addolorata
Ballerini, Patrizia
Di Baldassarre, Angela
Ghinassi, Barbara
author_sort Gaggi, Giulia
collection PubMed
description Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and can overcome the mesenchymal commitment. Here, we demonstrated that hFM-MSCs can give rise to spinal motor neurons by the sequential exposure to specific factors that induced a neuralization, caudalization and ventralization of undifferentiated cells, leading to a gradual gene and protein upregulation of early and late MN markers. Also, spontaneous electrical activity (spikes and bursts) was recorded. Finally, when co-cultured with myotubes, differentiated MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle cell contractions. These data demonstrated the hFM-MSCs can generate a mature and functional MN population that may represent an alternative source for regenerative medicine, disease modeling or drug screening.
format Online
Article
Text
id pubmed-9550654
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-95506542022-10-12 Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro Gaggi, Giulia Di Credico, Andrea Guarnieri, Simone Mariggiò, Maria Addolorata Ballerini, Patrizia Di Baldassarre, Angela Ghinassi, Barbara iScience Article Human fetal membrane mesenchymal stromal cells (hFM-MSCs) are a cell population easily isolable from the amniochorionic membrane of term placentas, without ethical issues or safety limitations. We previously reported that hFM-MSCs share some epigenetic characteristics with pluripotent stem cells and can overcome the mesenchymal commitment. Here, we demonstrated that hFM-MSCs can give rise to spinal motor neurons by the sequential exposure to specific factors that induced a neuralization, caudalization and ventralization of undifferentiated cells, leading to a gradual gene and protein upregulation of early and late MN markers. Also, spontaneous electrical activity (spikes and bursts) was recorded. Finally, when co-cultured with myotubes, differentiated MNs were able to create functional neuromuscular junctions that induced robust skeletal muscle cell contractions. These data demonstrated the hFM-MSCs can generate a mature and functional MN population that may represent an alternative source for regenerative medicine, disease modeling or drug screening. Elsevier 2022-09-23 /pmc/articles/PMC9550654/ /pubmed/36238899 http://dx.doi.org/10.1016/j.isci.2022.105197 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Gaggi, Giulia
Di Credico, Andrea
Guarnieri, Simone
Mariggiò, Maria Addolorata
Ballerini, Patrizia
Di Baldassarre, Angela
Ghinassi, Barbara
Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro
title Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro
title_full Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro
title_fullStr Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro
title_full_unstemmed Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro
title_short Human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro
title_sort human fetal membrane-mesenchymal stromal cells generate functional spinal motor neurons in vitro
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550654/
https://www.ncbi.nlm.nih.gov/pubmed/36238899
http://dx.doi.org/10.1016/j.isci.2022.105197
work_keys_str_mv AT gaggigiulia humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro
AT dicredicoandrea humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro
AT guarnierisimone humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro
AT mariggiomariaaddolorata humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro
AT ballerinipatrizia humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro
AT dibaldassarreangela humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro
AT ghinassibarbara humanfetalmembranemesenchymalstromalcellsgeneratefunctionalspinalmotorneuronsinvitro