Cargando…
Direct production of olefins from syngas with ultrahigh carbon efficiency
Syngas conversion serves as a competitive strategy to produce olefins chemicals from nonpetroleum resources. However, the goal to achieve desirable olefins selectivity with limited undesired C1 by-products remains a grand challenge. Herein, we present a non-classical Fischer-Tropsch to olefins proce...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550792/ https://www.ncbi.nlm.nih.gov/pubmed/36217004 http://dx.doi.org/10.1038/s41467-022-33715-w |
Sumario: | Syngas conversion serves as a competitive strategy to produce olefins chemicals from nonpetroleum resources. However, the goal to achieve desirable olefins selectivity with limited undesired C1 by-products remains a grand challenge. Herein, we present a non-classical Fischer-Tropsch to olefins process featuring high carbon efficiency that realizes 80.1% olefins selectivity with ultralow total selectivity of CH(4) and CO(2) (<5%) at CO conversion of 45.8%. This is enabled by sodium-promoted metallic ruthenium (Ru) nanoparticles with negligible water-gas-shift reactivity. Change in the local electronic structure and the decreased reactivity of chemisorbed H species on Ru surfaces tailor the reaction pathway to favor olefins production. No obvious deactivation is observed within 550 hours and the pellet catalyst also exhibits excellent catalytic performance in a pilot-scale reactor, suggesting promising practical applications. |
---|