Cargando…
Deep supervision and atrous inception-based U-Net combining CRF for automatic liver segmentation from CT
Due to low contrast and the blurred boundary between liver tissue and neighboring organs sharing similar intensity values, the problem of liver segmentation from CT images has not yet achieved satisfactory performance and remains a challenge. To alleviate these problems, we introduce deep supervisio...
Autores principales: | Lv, Peiqing, Wang, Jinke, Zhang, Xiangyang, Shi, Changfa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550798/ https://www.ncbi.nlm.nih.gov/pubmed/36216965 http://dx.doi.org/10.1038/s41598-022-21562-0 |
Ejemplares similares
-
SERR-U-Net: Squeeze-and-Excitation Residual and Recurrent Block-Based U-Net for Automatic Vessel Segmentation in Retinal Image
por: Wang, Jinke, et al.
Publicado: (2021) -
Atrous residual convolutional neural network based on U-Net for retinal vessel segmentation
por: Wu, Jin, et al.
Publicado: (2022) -
TAI-SARNET: Deep Transferred Atrous-Inception CNN for Small Samples SAR ATR
por: Ying, Zilu, et al.
Publicado: (2020) -
Automatic lesion segmentation using atrous convolutional deep neural networks in dermoscopic skin cancer images
por: Kaur, Ranpreet, et al.
Publicado: (2022) -
Waterfall Atrous Spatial Pooling Architecture for Efficient Semantic Segmentation
por: Artacho, Bruno, et al.
Publicado: (2019)