Cargando…
Clustering of trauma patients based on longitudinal data and the application of machine learning to predict recovery
Predicting recovery after trauma is important to provide patients a perspective on their estimated future health, to engage in shared decision making and target interventions to relevant patient groups. In the present study, several unsupervised techniques are employed to cluster patients based on l...
Autores principales: | Stoitsas, Kostas, Bahulikar, Saurabh, de Munter, Leonie, de Jongh, Mariska A. C., Jansen, Maria A. C., Jung, Merel M., van Wingerden, Marijn, Van Deun, Katrijn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550811/ https://www.ncbi.nlm.nih.gov/pubmed/36216874 http://dx.doi.org/10.1038/s41598-022-21390-2 |
Ejemplares similares
-
Longitudinal analysis of health status the first year after trauma in severely injured patients
por: Havermans, Roos Johanna Maria, et al.
Publicado: (2020) -
Health status and psychological outcomes after trauma: A prospective multicenter cohort study
por: Kruithof, Nena, et al.
Publicado: (2020) -
Long-term medical and productivity costs of severe trauma: Results from a prospective cohort study
por: van der Vlegel, Marjolein, et al.
Publicado: (2021) -
Prognostic factors for recovery of health status after injury: a prospective multicentre cohort study
por: de Munter, Leonie, et al.
Publicado: (2021) -
Improvement of the performance of survival prediction in the ageing blunt trauma population: A cohort study
por: de Munter, Leonie, et al.
Publicado: (2018)