Cargando…
Self-supervised learning mechanism for identification of eyelid malignant melanoma in pathologic slides with limited annotation
PURPOSE: The lack of finely annotated pathologic data has limited the application of deep learning systems (DLS) to the automated interpretation of pathologic slides. Therefore, this study develops a robust self-supervised learning (SSL) pathology diagnostic system to automatically detect malignant...
Autores principales: | Wang, Linyan, Jiang, Zijing, Shao, An, Liu, Zhengyun, Gu, Renshu, Ge, Ruiquan, Jia, Gangyong, Wang, Yaqi, Ye, Juan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9550873/ https://www.ncbi.nlm.nih.gov/pubmed/36237543 http://dx.doi.org/10.3389/fmed.2022.976467 |
Ejemplares similares
-
Pathology of eyelid tumors
por: Pe’er, Jacob
Publicado: (2016) -
A self-supervised contrastive learning approach for whole slide image representation in digital pathology
por: Fashi, Parsa Ashrafi, et al.
Publicado: (2022) -
Prediction of heart transplant rejection from routine pathology slides with self-supervised deep learning
por: Seraphin, Tobias Paul, et al.
Publicado: (2023) -
Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology
por: Gorman, Chris, et al.
Publicado: (2023) -
Epidemiology and Survival Outcomes for Eyelid Primary Malignant Melanoma: An Analysis of 1397 Cases in the SEER Database
por: Shan, Yi, et al.
Publicado: (2020)