Cargando…
Elucidating tumor heterogeneity from spatially resolved transcriptomics data by multi-view graph collaborative learning
Spatially resolved transcriptomics (SRT) technology enables us to gain novel insights into tissue architecture and cell development, especially in tumors. However, lacking computational exploitation of biological contexts and multi-view features severely hinders the elucidation of tissue heterogenei...
Autores principales: | Zuo, Chunman, Zhang, Yijian, Cao, Chen, Feng, Jinwang, Jiao, Mingqi, Chen, Luonan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9551038/ https://www.ncbi.nlm.nih.gov/pubmed/36216831 http://dx.doi.org/10.1038/s41467-022-33619-9 |
Ejemplares similares
-
Revealing Tissue Heterogeneity and Spatial Dark Genes from Spatially Resolved Transcriptomics by Multiview Graph Networks
por: Li, Ying, et al.
Publicado: (2023) -
Deep-joint-learning analysis model of single cell transcriptome and open chromatin accessibility data
por: Zuo, Chunman, et al.
Publicado: (2020) -
Computational elucidation of spatial gene expression variation from spatially resolved transcriptomics data
por: Li, Ke, et al.
Publicado: (2021) -
Deciphering tissue heterogeneity from spatially resolved transcriptomics by the autoencoder-assisted graph convolutional neural network
por: Li, Xinxing, et al.
Publicado: (2023) -
Imputation of spatially-resolved transcriptomes by graph-regularized tensor completion
por: Li, Zhuliu, et al.
Publicado: (2021)