Cargando…
The application of network agenda setting model during the COVID-19 pandemic based on latent dirichlet allocation topic modeling
Based on Network Agenda Setting Model, this study collected 42,516 media reports from Party Media, commercial media, and We Media of China during the COVID-19 pandemic. We trained LDA models for topic clustering through unsupervised machine learning. Questionnaires (N = 470) and social network analy...
Autores principales: | Liu, Kai, Geng, Xiaoyu, Liu, Xiaoyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9551107/ https://www.ncbi.nlm.nih.gov/pubmed/36237691 http://dx.doi.org/10.3389/fpsyg.2022.954576 |
Ejemplares similares
-
Public perceptions of digital fashion: An analysis of sentiment and Latent Dirichlet Allocation topic modeling
por: Zou, Yixin, et al.
Publicado: (2022) -
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
Latent Dirichlet Allocation modeling of environmental microbiomes
por: Kim, Anastasiia, et al.
Publicado: (2023) -
A Topic Modeling for ALICE'S Log Messages using Latent Dirichlet Allocation
por: Prayurahong, Pattapon, et al.
Publicado: (2022) -
Modeling Research Topics for Artificial Intelligence Applications in Medicine: Latent Dirichlet Allocation Application Study
por: Tran, Bach Xuan, et al.
Publicado: (2019)