Cargando…
Efficient learning representation of noise-reduced foam effects with convolutional denoising networks
This study proposes a neural network framework for modeling the foam effects found in liquid simulation without noise. The position and advection of the foam particles are calculated using the existing screen projection method, and the noise problem that occurs in this process is prevented by using...
Autores principales: | Kim, Jong-Hyun, Kim, YoungBin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9551625/ https://www.ncbi.nlm.nih.gov/pubmed/36215255 http://dx.doi.org/10.1371/journal.pone.0275117 |
Ejemplares similares
-
Method for Quantum Denoisers Using Convolutional Neural Network
por: Kim, Bong-Hyun, et al.
Publicado: (2022) -
Multi-Scale Feature Learning Convolutional Neural Network for Image Denoising
por: Zhang, Shuo, et al.
Publicado: (2023) -
Denoising Convolutional Networks to Accelerate Detector Simulation
por: Banerjee, Sunanda, et al.
Publicado: (2021) -
Denoising Convolutional Networks to Accelerate Detector Simulation
por: Banerjee, Sunanda, et al.
Publicado: (2022) -
Ovarian tumor diagnosis using deep convolutional neural networks and a denoising convolutional autoencoder
por: Jung, Yuyeon, et al.
Publicado: (2022)