Cargando…
On scientific understanding with artificial intelligence
An oracle that correctly predicts the outcome of every particle physics experiment, the products of every possible chemical reaction or the function of every protein would revolutionize science and technology. However, scientists would not be entirely satisfied because they would want to comprehend...
Autores principales: | Krenn, Mario, Pollice, Robert, Guo, Si Yue, Aldeghi, Matteo, Cervera-Lierta, Alba, Friederich, Pascal, dos Passos Gomes, Gabriel, Häse, Florian, Jinich, Adrian, Nigam, AkshatKumar, Yao, Zhenpeng, Aspuru-Guzik, Alán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552145/ https://www.ncbi.nlm.nih.gov/pubmed/36247217 http://dx.doi.org/10.1038/s42254-022-00518-3 |
Ejemplares similares
-
Beyond generative models: superfast traversal, optimization, novelty, exploration and discovery (STONED) algorithm for molecules using SELFIES
por: Nigam, AkshatKumar, et al.
Publicado: (2021) -
Data-Driven Strategies for Accelerated Materials Design
por: Pollice, Robert, et al.
Publicado: (2021) -
Parallel tempered genetic algorithm guided by deep neural networks for inverse molecular design
por: Nigam, AkshatKumar, et al.
Publicado: (2022) -
Recent advances in the self-referencing embedded strings (SELFIES) library
por: Lo, Alston, et al.
Publicado: (2023) -
Designing and understanding light-harvesting devices with machine learning
por: Häse, Florian, et al.
Publicado: (2020)