Cargando…
Predictive mutation signature of immunotherapy benefits in NSCLC based on machine learning algorithms
BACKGROUND: Developing prediction tools for immunotherapy approaches is a clinically important and rapidly emerging field. The routinely used prediction biomarker is inaccurate and may not adequately utilize large amounts of medical data. Machine learning is a promising way to predict the benefit of...
Autores principales: | Liu, Zhichao, Lin, Guo, Yan, Zeping, Li, Linduo, Wu, Xingchen, Shi, Jingrong, He, Jianxing, Zhao, Lei, Liang, Hengrui, Wang, Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552174/ https://www.ncbi.nlm.nih.gov/pubmed/36238300 http://dx.doi.org/10.3389/fimmu.2022.989275 |
Ejemplares similares
-
Identification of novel gene signature for lung adenocarcinoma by machine learning to predict immunotherapy and prognosis
por: Shu, Jianfeng, et al.
Publicado: (2023) -
A 5-Genomic Mutation Signature Can Predict the Survival for Patients With NSCLC Receiving Atezolizumab
por: Lin, Jiamao, et al.
Publicado: (2021) -
Prognostic Mutational Signatures of NSCLC Patients treated with chemotherapy, immunotherapy and chemoimmunotherapy
por: Smith, Margaret R., et al.
Publicado: (2023) -
Optimization of cancer immunotherapy through pyroptosis: A pyroptosis-related signature predicts survival benefit and potential synergy for immunotherapy in glioma
por: Zeng, Yu, et al.
Publicado: (2022) -
Neoadjuvant SBRT combined with immunotherapy in NSCLC: from mechanisms to therapy
por: Shi, Yanhong, et al.
Publicado: (2023)