Cargando…

A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics

Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus associated with elevated numbers of eosinophils. Disease diagnosis and monitoring require determining the concentration of eosinophils in esophageal biopsies, a time-consuming, tedious and somewhat subjective task...

Descripción completa

Detalles Bibliográficos
Autores principales: Daniel, Nati, Larey, Ariel, Aknin, Eliel, Osswald, Garrett A., Caldwell, Julie M., Rochman, Mark, Collins, Margaret H., Yang, Guang-Yu, Arva, Nicoleta C., Capocelli, Kelley E., Rothenberg, Marc E., Savir, Yonatan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552249/
https://www.ncbi.nlm.nih.gov/pubmed/36085661
http://dx.doi.org/10.1109/EMBC48229.2022.9871086
_version_ 1784806213632917504
author Daniel, Nati
Larey, Ariel
Aknin, Eliel
Osswald, Garrett A.
Caldwell, Julie M.
Rochman, Mark
Collins, Margaret H.
Yang, Guang-Yu
Arva, Nicoleta C.
Capocelli, Kelley E.
Rothenberg, Marc E.
Savir, Yonatan
author_facet Daniel, Nati
Larey, Ariel
Aknin, Eliel
Osswald, Garrett A.
Caldwell, Julie M.
Rochman, Mark
Collins, Margaret H.
Yang, Guang-Yu
Arva, Nicoleta C.
Capocelli, Kelley E.
Rothenberg, Marc E.
Savir, Yonatan
author_sort Daniel, Nati
collection PubMed
description Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus associated with elevated numbers of eosinophils. Disease diagnosis and monitoring require determining the concentration of eosinophils in esophageal biopsies, a time-consuming, tedious and somewhat subjective task currently performed by pathologists. Here, we developed a machine learning pipeline to identify, quantitate and diagnose EoE patients’ at the whole slide image level. We propose a platform that combines multi-label segmentation deep network decision support system with dynamics convolution that is able to process whole biopsy slide. Our network is able to segment both intact and not-intact eosinophils with a mean intersection over union (mIoU) of 0.93. This segmentation enables the local quantification of intact eosinophils with a mean absolute error of 0.611 eosinophils. We examined a cohort of 1066 whole slide images from 400 patients derived from multiple institutions. Using this set, our model achieved a global accuracy of 94.75%, sensitivity of 94.13%, and specificity of 95.25% in reporting EoE disease activity. Our work provides state-of-the-art performances on the largest EoE cohort to date, and successfully addresses two of the main challenges in EoE diagnostics and digital pathology, the need to detect several types of small features simultaneously, and the ability to analyze whole slides efficiently. Our results pave the way for an automated diagnosis of EoE and can be utilized for other conditions with similar challenges.
format Online
Article
Text
id pubmed-9552249
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-95522492023-07-01 A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics Daniel, Nati Larey, Ariel Aknin, Eliel Osswald, Garrett A. Caldwell, Julie M. Rochman, Mark Collins, Margaret H. Yang, Guang-Yu Arva, Nicoleta C. Capocelli, Kelley E. Rothenberg, Marc E. Savir, Yonatan Annu Int Conf IEEE Eng Med Biol Soc Article Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus associated with elevated numbers of eosinophils. Disease diagnosis and monitoring require determining the concentration of eosinophils in esophageal biopsies, a time-consuming, tedious and somewhat subjective task currently performed by pathologists. Here, we developed a machine learning pipeline to identify, quantitate and diagnose EoE patients’ at the whole slide image level. We propose a platform that combines multi-label segmentation deep network decision support system with dynamics convolution that is able to process whole biopsy slide. Our network is able to segment both intact and not-intact eosinophils with a mean intersection over union (mIoU) of 0.93. This segmentation enables the local quantification of intact eosinophils with a mean absolute error of 0.611 eosinophils. We examined a cohort of 1066 whole slide images from 400 patients derived from multiple institutions. Using this set, our model achieved a global accuracy of 94.75%, sensitivity of 94.13%, and specificity of 95.25% in reporting EoE disease activity. Our work provides state-of-the-art performances on the largest EoE cohort to date, and successfully addresses two of the main challenges in EoE diagnostics and digital pathology, the need to detect several types of small features simultaneously, and the ability to analyze whole slides efficiently. Our results pave the way for an automated diagnosis of EoE and can be utilized for other conditions with similar challenges. 2022-07 /pmc/articles/PMC9552249/ /pubmed/36085661 http://dx.doi.org/10.1109/EMBC48229.2022.9871086 Text en https://creativecommons.org/licenses/by/3.0/This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/)
spellingShingle Article
Daniel, Nati
Larey, Ariel
Aknin, Eliel
Osswald, Garrett A.
Caldwell, Julie M.
Rochman, Mark
Collins, Margaret H.
Yang, Guang-Yu
Arva, Nicoleta C.
Capocelli, Kelley E.
Rothenberg, Marc E.
Savir, Yonatan
A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics
title A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics
title_full A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics
title_fullStr A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics
title_full_unstemmed A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics
title_short A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics
title_sort deep multi-label segmentation network for eosinophilic esophagitis whole slide biopsy diagnostics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552249/
https://www.ncbi.nlm.nih.gov/pubmed/36085661
http://dx.doi.org/10.1109/EMBC48229.2022.9871086
work_keys_str_mv AT danielnati adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT lareyariel adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT aknineliel adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT osswaldgarretta adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT caldwelljuliem adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT rochmanmark adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT collinsmargareth adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT yangguangyu adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT arvanicoletac adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT capocellikelleye adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT rothenbergmarce adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT saviryonatan adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT danielnati deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT lareyariel deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT aknineliel deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT osswaldgarretta deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT caldwelljuliem deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT rochmanmark deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT collinsmargareth deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT yangguangyu deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT arvanicoletac deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT capocellikelleye deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT rothenbergmarce deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics
AT saviryonatan deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics