Cargando…
A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics
Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus associated with elevated numbers of eosinophils. Disease diagnosis and monitoring require determining the concentration of eosinophils in esophageal biopsies, a time-consuming, tedious and somewhat subjective task...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552249/ https://www.ncbi.nlm.nih.gov/pubmed/36085661 http://dx.doi.org/10.1109/EMBC48229.2022.9871086 |
_version_ | 1784806213632917504 |
---|---|
author | Daniel, Nati Larey, Ariel Aknin, Eliel Osswald, Garrett A. Caldwell, Julie M. Rochman, Mark Collins, Margaret H. Yang, Guang-Yu Arva, Nicoleta C. Capocelli, Kelley E. Rothenberg, Marc E. Savir, Yonatan |
author_facet | Daniel, Nati Larey, Ariel Aknin, Eliel Osswald, Garrett A. Caldwell, Julie M. Rochman, Mark Collins, Margaret H. Yang, Guang-Yu Arva, Nicoleta C. Capocelli, Kelley E. Rothenberg, Marc E. Savir, Yonatan |
author_sort | Daniel, Nati |
collection | PubMed |
description | Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus associated with elevated numbers of eosinophils. Disease diagnosis and monitoring require determining the concentration of eosinophils in esophageal biopsies, a time-consuming, tedious and somewhat subjective task currently performed by pathologists. Here, we developed a machine learning pipeline to identify, quantitate and diagnose EoE patients’ at the whole slide image level. We propose a platform that combines multi-label segmentation deep network decision support system with dynamics convolution that is able to process whole biopsy slide. Our network is able to segment both intact and not-intact eosinophils with a mean intersection over union (mIoU) of 0.93. This segmentation enables the local quantification of intact eosinophils with a mean absolute error of 0.611 eosinophils. We examined a cohort of 1066 whole slide images from 400 patients derived from multiple institutions. Using this set, our model achieved a global accuracy of 94.75%, sensitivity of 94.13%, and specificity of 95.25% in reporting EoE disease activity. Our work provides state-of-the-art performances on the largest EoE cohort to date, and successfully addresses two of the main challenges in EoE diagnostics and digital pathology, the need to detect several types of small features simultaneously, and the ability to analyze whole slides efficiently. Our results pave the way for an automated diagnosis of EoE and can be utilized for other conditions with similar challenges. |
format | Online Article Text |
id | pubmed-9552249 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
record_format | MEDLINE/PubMed |
spelling | pubmed-95522492023-07-01 A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics Daniel, Nati Larey, Ariel Aknin, Eliel Osswald, Garrett A. Caldwell, Julie M. Rochman, Mark Collins, Margaret H. Yang, Guang-Yu Arva, Nicoleta C. Capocelli, Kelley E. Rothenberg, Marc E. Savir, Yonatan Annu Int Conf IEEE Eng Med Biol Soc Article Eosinophilic esophagitis (EoE) is an allergic inflammatory condition of the esophagus associated with elevated numbers of eosinophils. Disease diagnosis and monitoring require determining the concentration of eosinophils in esophageal biopsies, a time-consuming, tedious and somewhat subjective task currently performed by pathologists. Here, we developed a machine learning pipeline to identify, quantitate and diagnose EoE patients’ at the whole slide image level. We propose a platform that combines multi-label segmentation deep network decision support system with dynamics convolution that is able to process whole biopsy slide. Our network is able to segment both intact and not-intact eosinophils with a mean intersection over union (mIoU) of 0.93. This segmentation enables the local quantification of intact eosinophils with a mean absolute error of 0.611 eosinophils. We examined a cohort of 1066 whole slide images from 400 patients derived from multiple institutions. Using this set, our model achieved a global accuracy of 94.75%, sensitivity of 94.13%, and specificity of 95.25% in reporting EoE disease activity. Our work provides state-of-the-art performances on the largest EoE cohort to date, and successfully addresses two of the main challenges in EoE diagnostics and digital pathology, the need to detect several types of small features simultaneously, and the ability to analyze whole slides efficiently. Our results pave the way for an automated diagnosis of EoE and can be utilized for other conditions with similar challenges. 2022-07 /pmc/articles/PMC9552249/ /pubmed/36085661 http://dx.doi.org/10.1109/EMBC48229.2022.9871086 Text en https://creativecommons.org/licenses/by/3.0/This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/ (https://creativecommons.org/licenses/by/3.0/) |
spellingShingle | Article Daniel, Nati Larey, Ariel Aknin, Eliel Osswald, Garrett A. Caldwell, Julie M. Rochman, Mark Collins, Margaret H. Yang, Guang-Yu Arva, Nicoleta C. Capocelli, Kelley E. Rothenberg, Marc E. Savir, Yonatan A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics |
title | A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics |
title_full | A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics |
title_fullStr | A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics |
title_full_unstemmed | A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics |
title_short | A Deep Multi-Label Segmentation Network For Eosinophilic Esophagitis Whole Slide Biopsy Diagnostics |
title_sort | deep multi-label segmentation network for eosinophilic esophagitis whole slide biopsy diagnostics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552249/ https://www.ncbi.nlm.nih.gov/pubmed/36085661 http://dx.doi.org/10.1109/EMBC48229.2022.9871086 |
work_keys_str_mv | AT danielnati adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT lareyariel adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT aknineliel adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT osswaldgarretta adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT caldwelljuliem adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT rochmanmark adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT collinsmargareth adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT yangguangyu adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT arvanicoletac adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT capocellikelleye adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT rothenbergmarce adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT saviryonatan adeepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT danielnati deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT lareyariel deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT aknineliel deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT osswaldgarretta deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT caldwelljuliem deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT rochmanmark deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT collinsmargareth deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT yangguangyu deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT arvanicoletac deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT capocellikelleye deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT rothenbergmarce deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics AT saviryonatan deepmultilabelsegmentationnetworkforeosinophilicesophagitiswholeslidebiopsydiagnostics |