Cargando…
R (H): a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection
Multiple-strain (polygenomic) infections are a ubiquitous feature of Plasmodium falciparum parasite population genetics. Under simple assumptions of superinfection, polygenomic infections are hypothesized to be the result of multiple infectious bites. As a result, polygenomic infections have been us...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552330/ https://www.ncbi.nlm.nih.gov/pubmed/36246152 http://dx.doi.org/10.1093/pnasnexus/pgac187 |
_version_ | 1784806226084757504 |
---|---|
author | Wong, Wesley Volkman, Sarah Daniels, Rachel Schaffner, Stephen Sy, Mouhamad Ndiaye, Yaye Die Badiane, Aida S Deme, Awa B Diallo, Mamadou Alpha Gomis, Jules Sy, Ngayo Ndiaye, Daouda Wirth, Dyann F Hartl, Daniel L |
author_facet | Wong, Wesley Volkman, Sarah Daniels, Rachel Schaffner, Stephen Sy, Mouhamad Ndiaye, Yaye Die Badiane, Aida S Deme, Awa B Diallo, Mamadou Alpha Gomis, Jules Sy, Ngayo Ndiaye, Daouda Wirth, Dyann F Hartl, Daniel L |
author_sort | Wong, Wesley |
collection | PubMed |
description | Multiple-strain (polygenomic) infections are a ubiquitous feature of Plasmodium falciparum parasite population genetics. Under simple assumptions of superinfection, polygenomic infections are hypothesized to be the result of multiple infectious bites. As a result, polygenomic infections have been used as evidence of repeat exposure and used to derive genetic metrics associated with high transmission intensity. However, not all polygenomic infections are the result of multiple infectious bites. Some result from the transmission of multiple, genetically related strains during a single infectious bite (cotransmission). Superinfection and cotransmission represent two distinct transmission processes, and distinguishing between the two could improve inferences regarding parasite transmission intensity. Here, we describe a new metric, R(H), that utilizes the correlation in allelic state (heterozygosity) within polygenomic infections to estimate the likelihood that the observed complexity resulted from either superinfection or cotransmission. R(H) is flexible and can be applied to any type of genetic data. As a proof of concept, we used R(H) to quantify polygenomic relatedness and estimate cotransmission and superinfection rates from a set of 1,758 malaria infections genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode. Contrary to expectation, we found that cotransmission was responsible for a significant fraction of 43% to 53% of the polygenomic infections collected in three distinct epidemiological regions in Senegal. The prediction that polygenomic infections frequently result from cotransmission stresses the need to incorporate estimates of relatedness within polygenomic infections to ensure the accuracy of genomic epidemiology surveillance data for informing public health activities. |
format | Online Article Text |
id | pubmed-9552330 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-95523302022-10-12 R (H): a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection Wong, Wesley Volkman, Sarah Daniels, Rachel Schaffner, Stephen Sy, Mouhamad Ndiaye, Yaye Die Badiane, Aida S Deme, Awa B Diallo, Mamadou Alpha Gomis, Jules Sy, Ngayo Ndiaye, Daouda Wirth, Dyann F Hartl, Daniel L PNAS Nexus Biological, Health, and Medical Sciences Multiple-strain (polygenomic) infections are a ubiquitous feature of Plasmodium falciparum parasite population genetics. Under simple assumptions of superinfection, polygenomic infections are hypothesized to be the result of multiple infectious bites. As a result, polygenomic infections have been used as evidence of repeat exposure and used to derive genetic metrics associated with high transmission intensity. However, not all polygenomic infections are the result of multiple infectious bites. Some result from the transmission of multiple, genetically related strains during a single infectious bite (cotransmission). Superinfection and cotransmission represent two distinct transmission processes, and distinguishing between the two could improve inferences regarding parasite transmission intensity. Here, we describe a new metric, R(H), that utilizes the correlation in allelic state (heterozygosity) within polygenomic infections to estimate the likelihood that the observed complexity resulted from either superinfection or cotransmission. R(H) is flexible and can be applied to any type of genetic data. As a proof of concept, we used R(H) to quantify polygenomic relatedness and estimate cotransmission and superinfection rates from a set of 1,758 malaria infections genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode. Contrary to expectation, we found that cotransmission was responsible for a significant fraction of 43% to 53% of the polygenomic infections collected in three distinct epidemiological regions in Senegal. The prediction that polygenomic infections frequently result from cotransmission stresses the need to incorporate estimates of relatedness within polygenomic infections to ensure the accuracy of genomic epidemiology surveillance data for informing public health activities. Oxford University Press 2022-09-10 /pmc/articles/PMC9552330/ /pubmed/36246152 http://dx.doi.org/10.1093/pnasnexus/pgac187 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of National Academy of Sciences. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reproduction and distribution of the work, in any medium, provided the original work is not altered or transformed in any way, and that the work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
spellingShingle | Biological, Health, and Medical Sciences Wong, Wesley Volkman, Sarah Daniels, Rachel Schaffner, Stephen Sy, Mouhamad Ndiaye, Yaye Die Badiane, Aida S Deme, Awa B Diallo, Mamadou Alpha Gomis, Jules Sy, Ngayo Ndiaye, Daouda Wirth, Dyann F Hartl, Daniel L R (H): a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection |
title |
R
(H): a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection |
title_full |
R
(H): a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection |
title_fullStr |
R
(H): a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection |
title_full_unstemmed |
R
(H): a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection |
title_short |
R
(H): a genetic metric for measuring intrahost Plasmodium falciparum relatedness and distinguishing cotransmission from superinfection |
title_sort | r
(h): a genetic metric for measuring intrahost plasmodium falciparum relatedness and distinguishing cotransmission from superinfection |
topic | Biological, Health, and Medical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552330/ https://www.ncbi.nlm.nih.gov/pubmed/36246152 http://dx.doi.org/10.1093/pnasnexus/pgac187 |
work_keys_str_mv | AT wongwesley rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT volkmansarah rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT danielsrachel rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT schaffnerstephen rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT symouhamad rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT ndiayeyayedie rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT badianeaidas rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT demeawab rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT diallomamadoualpha rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT gomisjules rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT syngayo rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT ndiayedaouda rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT wirthdyannf rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection AT hartldaniell rhageneticmetricformeasuringintrahostplasmodiumfalciparumrelatednessanddistinguishingcotransmissionfromsuperinfection |