Cargando…
Deep learning algorithm reveals two prognostic subtypes in patients with gliomas
BACKGROUND: Gliomas are highly complex and heterogeneous tumors, rendering prognosis prediction challenging. The advent of deep learning algorithms and the accessibility of multi-omic data represent a new approach for the identification of survival-sensitive subtypes. Herein, an autoencoder-based ap...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9552440/ https://www.ncbi.nlm.nih.gov/pubmed/36221066 http://dx.doi.org/10.1186/s12859-022-04970-x |