Cargando…
Validating a membership disclosure metric for synthetic health data
BACKGROUND: One of the increasingly accepted methods to evaluate the privacy of synthetic data is by measuring the risk of membership disclosure. This is a measure of the F1 accuracy that an adversary would correctly ascertain that a target individual from the same population as the real data is in...
Autores principales: | El Emam, Khaled, Mosquera, Lucy, Fang, Xi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553223/ https://www.ncbi.nlm.nih.gov/pubmed/36238080 http://dx.doi.org/10.1093/jamiaopen/ooac083 |
Ejemplares similares
-
Utility Metrics for Evaluating Synthetic Health Data Generation Methods: Validation Study
por: El Emam, Khaled, et al.
Publicado: (2022) -
Evaluating Identity Disclosure Risk in Fully Synthetic Health Data: Model Development and Validation
por: El Emam, Khaled, et al.
Publicado: (2020) -
Evaluating the utility of synthetic COVID-19 case data
por: El Emam, Khaled, et al.
Publicado: (2021) -
Optimizing the synthesis of clinical trial data using sequential trees
por: Emam, Khaled El, et al.
Publicado: (2020) -
Can synthetic data be a proxy for real clinical trial data? A validation study
por: Azizi, Zahra, et al.
Publicado: (2021)