Cargando…

Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa)

Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniq...

Descripción completa

Detalles Bibliográficos
Autores principales: Aubry, Jean-Francois, Bates, Oscar, Boehm, Christian, Butts Pauly, Kim, Christensen, Douglas, Cueto, Carlos, Gélat, Pierre, Guasch, Lluis, Jaros, Jiri, Jing, Yun, Jones, Rebecca, Li, Ningrui, Marty, Patrick, Montanaro, Hazael, Neufeld, Esra, Pichardo, Samuel, Pinton, Gianmarco, Pulkkinen, Aki, Stanziola, Antonio, Thielscher, Axel, Treeby, Bradley, van 't Wout, Elwin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Acoustical Society of America 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553291/
https://www.ncbi.nlm.nih.gov/pubmed/36050189
http://dx.doi.org/10.1121/10.0013426
_version_ 1784806435813588992
author Aubry, Jean-Francois
Bates, Oscar
Boehm, Christian
Butts Pauly, Kim
Christensen, Douglas
Cueto, Carlos
Gélat, Pierre
Guasch, Lluis
Jaros, Jiri
Jing, Yun
Jones, Rebecca
Li, Ningrui
Marty, Patrick
Montanaro, Hazael
Neufeld, Esra
Pichardo, Samuel
Pinton, Gianmarco
Pulkkinen, Aki
Stanziola, Antonio
Thielscher, Axel
Treeby, Bradley
van 't Wout, Elwin
author_facet Aubry, Jean-Francois
Bates, Oscar
Boehm, Christian
Butts Pauly, Kim
Christensen, Douglas
Cueto, Carlos
Gélat, Pierre
Guasch, Lluis
Jaros, Jiri
Jing, Yun
Jones, Rebecca
Li, Ningrui
Marty, Patrick
Montanaro, Hazael
Neufeld, Esra
Pichardo, Samuel
Pinton, Gianmarco
Pulkkinen, Aki
Stanziola, Antonio
Thielscher, Axel
Treeby, Bradley
van 't Wout, Elwin
author_sort Aubry, Jean-Francois
collection PubMed
description Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.
format Online
Article
Text
id pubmed-9553291
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Acoustical Society of America
record_format MEDLINE/PubMed
spelling pubmed-95532912022-10-12 Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa) Aubry, Jean-Francois Bates, Oscar Boehm, Christian Butts Pauly, Kim Christensen, Douglas Cueto, Carlos Gélat, Pierre Guasch, Lluis Jaros, Jiri Jing, Yun Jones, Rebecca Li, Ningrui Marty, Patrick Montanaro, Hazael Neufeld, Esra Pichardo, Samuel Pinton, Gianmarco Pulkkinen, Aki Stanziola, Antonio Thielscher, Axel Treeby, Bradley van 't Wout, Elwin J Acoust Soc Am Biomedical Acoustics Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons. Acoustical Society of America 2022-08 2022-08-16 /pmc/articles/PMC9553291/ /pubmed/36050189 http://dx.doi.org/10.1121/10.0013426 Text en © 2022 Author(s). 0001-4966/2022/152(2)/1003/17 https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Biomedical Acoustics
Aubry, Jean-Francois
Bates, Oscar
Boehm, Christian
Butts Pauly, Kim
Christensen, Douglas
Cueto, Carlos
Gélat, Pierre
Guasch, Lluis
Jaros, Jiri
Jing, Yun
Jones, Rebecca
Li, Ningrui
Marty, Patrick
Montanaro, Hazael
Neufeld, Esra
Pichardo, Samuel
Pinton, Gianmarco
Pulkkinen, Aki
Stanziola, Antonio
Thielscher, Axel
Treeby, Bradley
van 't Wout, Elwin
Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa)
title Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa)
title_full Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa)
title_fullStr Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa)
title_full_unstemmed Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa)
title_short Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa)
title_sort benchmark problems for transcranial ultrasound simulation: intercomparison of compressional wave modelsa)
topic Biomedical Acoustics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553291/
https://www.ncbi.nlm.nih.gov/pubmed/36050189
http://dx.doi.org/10.1121/10.0013426
work_keys_str_mv AT aubryjeanfrancois benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT batesoscar benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT boehmchristian benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT buttspaulykim benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT christensendouglas benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT cuetocarlos benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT gelatpierre benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT guaschlluis benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT jarosjiri benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT jingyun benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT jonesrebecca benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT liningrui benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT martypatrick benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT montanarohazael benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT neufeldesra benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT pichardosamuel benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT pintongianmarco benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT pulkkinenaki benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT stanziolaantonio benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT thielscheraxel benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT treebybradley benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa
AT vantwoutelwin benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa