Cargando…
Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa)
Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniq...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Acoustical Society of America
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553291/ https://www.ncbi.nlm.nih.gov/pubmed/36050189 http://dx.doi.org/10.1121/10.0013426 |
_version_ | 1784806435813588992 |
---|---|
author | Aubry, Jean-Francois Bates, Oscar Boehm, Christian Butts Pauly, Kim Christensen, Douglas Cueto, Carlos Gélat, Pierre Guasch, Lluis Jaros, Jiri Jing, Yun Jones, Rebecca Li, Ningrui Marty, Patrick Montanaro, Hazael Neufeld, Esra Pichardo, Samuel Pinton, Gianmarco Pulkkinen, Aki Stanziola, Antonio Thielscher, Axel Treeby, Bradley van 't Wout, Elwin |
author_facet | Aubry, Jean-Francois Bates, Oscar Boehm, Christian Butts Pauly, Kim Christensen, Douglas Cueto, Carlos Gélat, Pierre Guasch, Lluis Jaros, Jiri Jing, Yun Jones, Rebecca Li, Ningrui Marty, Patrick Montanaro, Hazael Neufeld, Esra Pichardo, Samuel Pinton, Gianmarco Pulkkinen, Aki Stanziola, Antonio Thielscher, Axel Treeby, Bradley van 't Wout, Elwin |
author_sort | Aubry, Jean-Francois |
collection | PubMed |
description | Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons. |
format | Online Article Text |
id | pubmed-9553291 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Acoustical Society of America |
record_format | MEDLINE/PubMed |
spelling | pubmed-95532912022-10-12 Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa) Aubry, Jean-Francois Bates, Oscar Boehm, Christian Butts Pauly, Kim Christensen, Douglas Cueto, Carlos Gélat, Pierre Guasch, Lluis Jaros, Jiri Jing, Yun Jones, Rebecca Li, Ningrui Marty, Patrick Montanaro, Hazael Neufeld, Esra Pichardo, Samuel Pinton, Gianmarco Pulkkinen, Aki Stanziola, Antonio Thielscher, Axel Treeby, Bradley van 't Wout, Elwin J Acoust Soc Am Biomedical Acoustics Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons. Acoustical Society of America 2022-08 2022-08-16 /pmc/articles/PMC9553291/ /pubmed/36050189 http://dx.doi.org/10.1121/10.0013426 Text en © 2022 Author(s). 0001-4966/2022/152(2)/1003/17 https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ). |
spellingShingle | Biomedical Acoustics Aubry, Jean-Francois Bates, Oscar Boehm, Christian Butts Pauly, Kim Christensen, Douglas Cueto, Carlos Gélat, Pierre Guasch, Lluis Jaros, Jiri Jing, Yun Jones, Rebecca Li, Ningrui Marty, Patrick Montanaro, Hazael Neufeld, Esra Pichardo, Samuel Pinton, Gianmarco Pulkkinen, Aki Stanziola, Antonio Thielscher, Axel Treeby, Bradley van 't Wout, Elwin Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa) |
title | Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa) |
title_full | Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa) |
title_fullStr | Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa) |
title_full_unstemmed | Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa) |
title_short | Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave modelsa) |
title_sort | benchmark problems for transcranial ultrasound simulation: intercomparison of compressional wave modelsa) |
topic | Biomedical Acoustics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553291/ https://www.ncbi.nlm.nih.gov/pubmed/36050189 http://dx.doi.org/10.1121/10.0013426 |
work_keys_str_mv | AT aubryjeanfrancois benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT batesoscar benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT boehmchristian benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT buttspaulykim benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT christensendouglas benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT cuetocarlos benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT gelatpierre benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT guaschlluis benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT jarosjiri benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT jingyun benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT jonesrebecca benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT liningrui benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT martypatrick benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT montanarohazael benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT neufeldesra benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT pichardosamuel benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT pintongianmarco benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT pulkkinenaki benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT stanziolaantonio benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT thielscheraxel benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT treebybradley benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa AT vantwoutelwin benchmarkproblemsfortranscranialultrasoundsimulationintercomparisonofcompressionalwavemodelsa |