Cargando…
Breast MRI Segmentation and Ki-67 High- and Low-Expression Prediction Algorithm Based on Deep Learning
RESULTS: The DSC, PPV, and sensitivity of our combined model are 0.94, 0.93, and 0.94, respectively, with better segmentation performance. And we compare with the segmentation frameworks of other papers and find that our combined model can make accurate segmentation of breast tumors. CONCLUSION: Our...
Autores principales: | Li, Yuan-Zhe, Huang, Yin-Hui, Su, Xian-yan, Gu, Zhen-qi, Lai, Qing-Quan, Huang, Jing, Li, Shu-Ting, Wang, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553330/ https://www.ncbi.nlm.nih.gov/pubmed/36238476 http://dx.doi.org/10.1155/2022/1770531 |
Ejemplares similares
-
Breast MRI Tumor Automatic Segmentation and Triple-Negative Breast Cancer Discrimination Algorithm Based on Deep Learning
por: Guo, Ying-Ying, et al.
Publicado: (2022) -
Cardiac MRI segmentation of the atria based on UU-NET
por: Wang, Yi, et al.
Publicado: (2022) -
Prognostic Value of Ki67 in Patients with Stage 1–2 Endometrial Cancer: Validation of the Cut-off Value of Ki67 as a Predictive Factor
por: Jiang, Peng, et al.
Publicado: (2020) -
Ki-67 gene expression
por: Uxa, Sigrid, et al.
Publicado: (2021) -
MRI Radiomics-Based Machine Learning Models for Ki67 Expression and Gleason Grade Group Prediction in Prostate Cancer
por: Qiao, Xiaofeng, et al.
Publicado: (2023)