Cargando…
Neural Networks for Survival Prediction in Medicine Using Prognostic Factors: A Review and Critical Appraisal
Survival analysis deals with the expected duration of time until one or more events of interest occur. Time to the event of interest may be unobserved, a phenomenon commonly known as right censoring, which renders the analysis of these data challenging. Over the years, machine learning algorithms ha...
Autores principales: | Kantidakis, Georgios, Hazewinkel, Audinga-Dea, Fiocco, Marta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553343/ https://www.ncbi.nlm.nih.gov/pubmed/36238497 http://dx.doi.org/10.1155/2022/1176060 |
Ejemplares similares
-
A Simulation Study to Compare the Predictive Performance of Survival Neural Networks with Cox Models for Clinical Trial Data
por: Kantidakis, Georgios, et al.
Publicado: (2021) -
Disease progression in osteosarcoma: a multistate model for the EURAMOS-1 (European and American Osteosarcoma Study) randomised clinical trial
por: Hazewinkel, Audinga-Dea, et al.
Publicado: (2022) -
Statistical models versus machine learning for competing risks: development and validation of prognostic models
por: Kantidakis, Georgios, et al.
Publicado: (2023) -
Survival prediction models since liver transplantation - comparisons between Cox models and machine learning techniques
por: Kantidakis, Georgios, et al.
Publicado: (2020) -
Mendelian randomization analysis of the causal impact of body mass index and waist-hip ratio on rates of hospital admission
por: Hazewinkel, Audinga-Dea, et al.
Publicado: (2022)