Cargando…
Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis
Type 2 diabetes mellitus (T2DM) has been regarded as a critical risk factor for pulmonary tuberculosis (PTB). Ginsenoside Rg1 has been identified as a potential therapeutic agent for T2DM by suppressing the inflammatory response. However, the effect of Rg1 on T2DM-associated PTB has not been reporte...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553455/ https://www.ncbi.nlm.nih.gov/pubmed/36248428 http://dx.doi.org/10.1155/2022/9017021 |
_version_ | 1784806474991534080 |
---|---|
author | Ma, Tingxi Mao, Xiaohui Meng, Xiangguo Wang, Qinghu |
author_facet | Ma, Tingxi Mao, Xiaohui Meng, Xiangguo Wang, Qinghu |
author_sort | Ma, Tingxi |
collection | PubMed |
description | Type 2 diabetes mellitus (T2DM) has been regarded as a critical risk factor for pulmonary tuberculosis (PTB). Ginsenoside Rg1 has been identified as a potential therapeutic agent for T2DM by suppressing the inflammatory response. However, the effect of Rg1 on T2DM-associated PTB has not been reported. In this study, we aimed to explore the function of Rg1 in the regulation of T2DM-associated PTB. We established a T2DM-associated PTB mouse model and found that the fibrosis of lung tissues was inhibited by Rg1 in T2DM-associated PTB mice. The lung injury of T2DM-associated PTB mice was repressed by Rg1. Moreover, the levels of IL-6, TNF-α, and IL-1β in the lung tissues and serum were decreased by Rg1 in T2DM-associated PTB mice. The treatment with Rg1 inhibited the levels of free fatty acid and enhanced the expression of miR-15b-5p in lung tissues of T2DM-associated PTB mice. MiR-15b-5p targeted and inhibited the STAT3 expression. The expression of STAT3 was downregulated by Rg1, while the inhibition of miR-15b-5p reversed the downregulation. The expression of miR-15b-5p was reduced, but the expression of STAT3 was upregulated in the lung tissues of T2DM-associated PTB mice. We validated that miR-15b-5p attenuated inflammation and lung injury in the T2DM-associated PTB mouse model. The overexpression of STAT3 or the suppression of miR-15b-5p restored lung fibrosis and injury inhibited by Rg1 in T2DM-associated PTB mice. Meanwhile, the Rg1-repressed levels of IL-6, TNF-α, and IL-1β were enhanced by the overexpression of STAT3 or the suppression of miR-15b-5p. In addition, the levels of free fatty acid repressed by Rg1 were reversed by STAT3 overexpression and miR-15b-5p inhibition. Thus, we conclude that ginsenoside Rg1 inhibits the STAT3 expression by miR-15b-5p to attenuate lung injury in mice with type 2 diabetes mellitus-associated pulmonary tuberculosis. |
format | Online Article Text |
id | pubmed-9553455 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-95534552022-10-13 Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis Ma, Tingxi Mao, Xiaohui Meng, Xiangguo Wang, Qinghu Evid Based Complement Alternat Med Research Article Type 2 diabetes mellitus (T2DM) has been regarded as a critical risk factor for pulmonary tuberculosis (PTB). Ginsenoside Rg1 has been identified as a potential therapeutic agent for T2DM by suppressing the inflammatory response. However, the effect of Rg1 on T2DM-associated PTB has not been reported. In this study, we aimed to explore the function of Rg1 in the regulation of T2DM-associated PTB. We established a T2DM-associated PTB mouse model and found that the fibrosis of lung tissues was inhibited by Rg1 in T2DM-associated PTB mice. The lung injury of T2DM-associated PTB mice was repressed by Rg1. Moreover, the levels of IL-6, TNF-α, and IL-1β in the lung tissues and serum were decreased by Rg1 in T2DM-associated PTB mice. The treatment with Rg1 inhibited the levels of free fatty acid and enhanced the expression of miR-15b-5p in lung tissues of T2DM-associated PTB mice. MiR-15b-5p targeted and inhibited the STAT3 expression. The expression of STAT3 was downregulated by Rg1, while the inhibition of miR-15b-5p reversed the downregulation. The expression of miR-15b-5p was reduced, but the expression of STAT3 was upregulated in the lung tissues of T2DM-associated PTB mice. We validated that miR-15b-5p attenuated inflammation and lung injury in the T2DM-associated PTB mouse model. The overexpression of STAT3 or the suppression of miR-15b-5p restored lung fibrosis and injury inhibited by Rg1 in T2DM-associated PTB mice. Meanwhile, the Rg1-repressed levels of IL-6, TNF-α, and IL-1β were enhanced by the overexpression of STAT3 or the suppression of miR-15b-5p. In addition, the levels of free fatty acid repressed by Rg1 were reversed by STAT3 overexpression and miR-15b-5p inhibition. Thus, we conclude that ginsenoside Rg1 inhibits the STAT3 expression by miR-15b-5p to attenuate lung injury in mice with type 2 diabetes mellitus-associated pulmonary tuberculosis. Hindawi 2022-10-04 /pmc/articles/PMC9553455/ /pubmed/36248428 http://dx.doi.org/10.1155/2022/9017021 Text en Copyright © 2022 Tingxi Ma et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Ma, Tingxi Mao, Xiaohui Meng, Xiangguo Wang, Qinghu Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis |
title | Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis |
title_full | Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis |
title_fullStr | Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis |
title_full_unstemmed | Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis |
title_short | Ginsenoside Rg1 Inhibits STAT3 Expression by miR-15b-5p to Attenuate Lung Injury in Mice with Type 2 Diabetes Mellitus-Associated Pulmonary Tuberculosis |
title_sort | ginsenoside rg1 inhibits stat3 expression by mir-15b-5p to attenuate lung injury in mice with type 2 diabetes mellitus-associated pulmonary tuberculosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553455/ https://www.ncbi.nlm.nih.gov/pubmed/36248428 http://dx.doi.org/10.1155/2022/9017021 |
work_keys_str_mv | AT matingxi ginsenosiderg1inhibitsstat3expressionbymir15b5ptoattenuatelunginjuryinmicewithtype2diabetesmellitusassociatedpulmonarytuberculosis AT maoxiaohui ginsenosiderg1inhibitsstat3expressionbymir15b5ptoattenuatelunginjuryinmicewithtype2diabetesmellitusassociatedpulmonarytuberculosis AT mengxiangguo ginsenosiderg1inhibitsstat3expressionbymir15b5ptoattenuatelunginjuryinmicewithtype2diabetesmellitusassociatedpulmonarytuberculosis AT wangqinghu ginsenosiderg1inhibitsstat3expressionbymir15b5ptoattenuatelunginjuryinmicewithtype2diabetesmellitusassociatedpulmonarytuberculosis |