Cargando…
Implementation of Machine Learning Mechanism for Recognising Prostate Cancer through Photoacoustic Signal
Biological tissues may be studied using photoacoustic (PA) spectroscopy, which can yield a wealth of physical and chemical data. However, it is really challenging to directly analyse these tissues because of a lot of data. Data mining techniques can get around this issue. In order to diagnose prosta...
Autores principales: | Ramkumar, G., Bhuvaneswari, P., Radhika, R., Saranya, S., Vijayalakshmi, S., Karpagam, M., Wilfred, Florin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553468/ https://www.ncbi.nlm.nih.gov/pubmed/36262985 http://dx.doi.org/10.1155/2022/6862083 |
Ejemplares similares
-
Prostate cancer identification via photoacoustic spectroscopy and machine learning
por: Chen, Yingna, et al.
Publicado: (2021) -
A Feasible Multimodal Photoacoustic Imaging Approach for Evaluating the Clinical Symptoms of Inflammatory Arthritis
por: Rajasekar, B., et al.
Publicado: (2022) -
Automated Recognition of Cancer Tissues through Deep Learning Framework from the Photoacoustic Specimen
por: Sobhanan Warrier, Gayathry, et al.
Publicado: (2022) -
Context encoding enables machine learning-based quantitative photoacoustics
por: Kirchner, Thomas, et al.
Publicado: (2018) -
Recognising the challenges of implementing multi-centre adaptive plan of the day radiotherapy
por: Webster, Amanda, et al.
Publicado: (2022)