Cargando…
Spatiotemporal dynamic network for regional maritime vessel flow prediction amid COVID-19
The COVID-19 pandemic has stifled international trade and the global maritime industry. Its impact on the routing of the regional vessel traffic flow provides supportive data to port authorities, ship owners, shippers, and consignees. This study proposes a spatiotemporal dynamic graph neural network...
Autores principales: | Zhao, Chuan, Li, Xin, Zuo, Min, Mo, Lipo, Yang, Changchun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553475/ https://www.ncbi.nlm.nih.gov/pubmed/36250134 http://dx.doi.org/10.1016/j.tranpol.2022.09.029 |
Ejemplares similares
-
Using Deep Learning to Forecast Maritime Vessel Flows
por: Zhou, Xiangyu, et al.
Publicado: (2020) -
Maritime route and vessel tracklet dataset for vessel-to-route association
por: Iphar, Clément, et al.
Publicado: (2022) -
Dynamic capabilities of maritime infrastructure: conceptual design of merchant vessels with usability in crisis
por: Hirayama, Satoshi, et al.
Publicado: (2023) -
Every Vessel Counts: Neural Network Based Maritime Traffic Counting System
por: Petković, Miro, et al.
Publicado: (2023) -
Road traffic flow prediction based on dynamic spatiotemporal graph attention network
por: Chen, Yuguang, et al.
Publicado: (2023)