Cargando…

Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS

OBJECTIVE: To analyze the differentially expressed genes (DEGs) in rats with endogenous acute respiratory distress syndrome (ARDS) lung injury and explore the pathogenesis and early diagnostic molecular markers using whole transcriptomic data. METHODS: Twelve 8-week-old male Sprague Dawley rats were...

Descripción completa

Detalles Bibliográficos
Autores principales: Xie, Yongpeng, Luo, Jiye, Hu, Wenxia, Ye, Chongchong, Ren, Panpan, Wang, Yanli, Li, Xiaomin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553538/
https://www.ncbi.nlm.nih.gov/pubmed/36246560
http://dx.doi.org/10.1155/2022/1614208
_version_ 1784806496044843008
author Xie, Yongpeng
Luo, Jiye
Hu, Wenxia
Ye, Chongchong
Ren, Panpan
Wang, Yanli
Li, Xiaomin
author_facet Xie, Yongpeng
Luo, Jiye
Hu, Wenxia
Ye, Chongchong
Ren, Panpan
Wang, Yanli
Li, Xiaomin
author_sort Xie, Yongpeng
collection PubMed
description OBJECTIVE: To analyze the differentially expressed genes (DEGs) in rats with endogenous acute respiratory distress syndrome (ARDS) lung injury and explore the pathogenesis and early diagnostic molecular markers using whole transcriptomic data. METHODS: Twelve 8-week-old male Sprague Dawley rats were selected and randomly and equally divided into ARDS lung injury group and normal control group. RNA was extracted from the left lung tissues of both the groups and sequenced using the paired-end sequencing mode of the Illumina Hiseq sequencing platform. The DEGs of miRNA, cirRNA, lncRNA, and mRNA were screened using DESeq2 software, and the ceRNA regulatory network was constructed using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the mRNA DEGs. STRING and Cytoscape software were used to construct the protein interaction network and identify the 15 key genes, which were verified using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Based on different screening conditions, and compared with the control group, the ARDS lung injury group showed 836 mRNA DEGs (386 upregulated and 450 downregulated), 110 lncRNA DEGs (53 upregulated and 57 downregulated), 19 circRNA DEGs (3 upregulated and 16 downregulated), and 6 miRNA DEGs (5 upregulated and 1 downregulated gene). GO showed that the DEGs of mRNA were mainly involved in biological processes, such as defense response to lipopolysaccharide and other organisms, leukocyte chemotaxis, neutrophil chemotaxis, and cytokine-mediated signaling. KEGG enrichment analysis showed that the DEGs played their biological roles mainly by participating in IL-17, TNF, and chemokine signaling pathways. The PPI analysis showed a total of 281 node proteins and 634 interaction edges. The top 15 key genes, which were screened, included Cxcl10, Mx1, Irf7, Isg15, Ifit3, Ifit2, Rsad2, Ifi47, Oasl, Dhx58, Usp18, Cmpk2, Herc6, Ifit1, and Gbp4. The ceRNA network analysis showed 69 nodes and 73 correlation pairs, where the key gene nodes were miR-21-3p, Camk2g, and Stx2. CONCLUSIONS: The chemotaxis, migration, and degranulation of inflammatory cells, cytokine immune response, autophagy, and apoptosis have significant biological functions in the occurrence and development of endogenous acute lung injury during ARDS. Thus, the camk2g/miR-21-3p/lncRNA/circRNA network, CXCL10/CXCR3, and IL-17 signaling pathways might provide novel insights and targets for further studying the lung injury mechanism and clinical treatment.
format Online
Article
Text
id pubmed-9553538
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-95535382022-10-13 Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS Xie, Yongpeng Luo, Jiye Hu, Wenxia Ye, Chongchong Ren, Panpan Wang, Yanli Li, Xiaomin Dis Markers Research Article OBJECTIVE: To analyze the differentially expressed genes (DEGs) in rats with endogenous acute respiratory distress syndrome (ARDS) lung injury and explore the pathogenesis and early diagnostic molecular markers using whole transcriptomic data. METHODS: Twelve 8-week-old male Sprague Dawley rats were selected and randomly and equally divided into ARDS lung injury group and normal control group. RNA was extracted from the left lung tissues of both the groups and sequenced using the paired-end sequencing mode of the Illumina Hiseq sequencing platform. The DEGs of miRNA, cirRNA, lncRNA, and mRNA were screened using DESeq2 software, and the ceRNA regulatory network was constructed using Cytoscape. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed using the mRNA DEGs. STRING and Cytoscape software were used to construct the protein interaction network and identify the 15 key genes, which were verified using quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: Based on different screening conditions, and compared with the control group, the ARDS lung injury group showed 836 mRNA DEGs (386 upregulated and 450 downregulated), 110 lncRNA DEGs (53 upregulated and 57 downregulated), 19 circRNA DEGs (3 upregulated and 16 downregulated), and 6 miRNA DEGs (5 upregulated and 1 downregulated gene). GO showed that the DEGs of mRNA were mainly involved in biological processes, such as defense response to lipopolysaccharide and other organisms, leukocyte chemotaxis, neutrophil chemotaxis, and cytokine-mediated signaling. KEGG enrichment analysis showed that the DEGs played their biological roles mainly by participating in IL-17, TNF, and chemokine signaling pathways. The PPI analysis showed a total of 281 node proteins and 634 interaction edges. The top 15 key genes, which were screened, included Cxcl10, Mx1, Irf7, Isg15, Ifit3, Ifit2, Rsad2, Ifi47, Oasl, Dhx58, Usp18, Cmpk2, Herc6, Ifit1, and Gbp4. The ceRNA network analysis showed 69 nodes and 73 correlation pairs, where the key gene nodes were miR-21-3p, Camk2g, and Stx2. CONCLUSIONS: The chemotaxis, migration, and degranulation of inflammatory cells, cytokine immune response, autophagy, and apoptosis have significant biological functions in the occurrence and development of endogenous acute lung injury during ARDS. Thus, the camk2g/miR-21-3p/lncRNA/circRNA network, CXCL10/CXCR3, and IL-17 signaling pathways might provide novel insights and targets for further studying the lung injury mechanism and clinical treatment. Hindawi 2022-10-04 /pmc/articles/PMC9553538/ /pubmed/36246560 http://dx.doi.org/10.1155/2022/1614208 Text en Copyright © 2022 Yongpeng Xie et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Xie, Yongpeng
Luo, Jiye
Hu, Wenxia
Ye, Chongchong
Ren, Panpan
Wang, Yanli
Li, Xiaomin
Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS
title Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS
title_full Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS
title_fullStr Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS
title_full_unstemmed Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS
title_short Whole Transcriptomic Analysis of Key Genes and Signaling Pathways in Endogenous ARDS
title_sort whole transcriptomic analysis of key genes and signaling pathways in endogenous ards
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553538/
https://www.ncbi.nlm.nih.gov/pubmed/36246560
http://dx.doi.org/10.1155/2022/1614208
work_keys_str_mv AT xieyongpeng wholetranscriptomicanalysisofkeygenesandsignalingpathwaysinendogenousards
AT luojiye wholetranscriptomicanalysisofkeygenesandsignalingpathwaysinendogenousards
AT huwenxia wholetranscriptomicanalysisofkeygenesandsignalingpathwaysinendogenousards
AT yechongchong wholetranscriptomicanalysisofkeygenesandsignalingpathwaysinendogenousards
AT renpanpan wholetranscriptomicanalysisofkeygenesandsignalingpathwaysinendogenousards
AT wangyanli wholetranscriptomicanalysisofkeygenesandsignalingpathwaysinendogenousards
AT lixiaomin wholetranscriptomicanalysisofkeygenesandsignalingpathwaysinendogenousards