Cargando…

Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies

BACKGROUND: Maternal exposure to particulate air pollution during pregnancy has been linked to multiple adverse birth outcomes causing burden of disease later in the child's life. To date, there is a paucity of data on whether or not ambient particles can both reach and cross the human placenta...

Descripción completa

Detalles Bibliográficos
Autores principales: Bongaerts, Eva, Lecante, Laetitia L, Bové, Hannelore, Roeffaers, Maarten B J, Ameloot, Marcel, Fowler, Paul A, Nawrot, Tim S
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier B.V 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553674/
https://www.ncbi.nlm.nih.gov/pubmed/36208643
http://dx.doi.org/10.1016/S2542-5196(22)00200-5
_version_ 1784806529530068992
author Bongaerts, Eva
Lecante, Laetitia L
Bové, Hannelore
Roeffaers, Maarten B J
Ameloot, Marcel
Fowler, Paul A
Nawrot, Tim S
author_facet Bongaerts, Eva
Lecante, Laetitia L
Bové, Hannelore
Roeffaers, Maarten B J
Ameloot, Marcel
Fowler, Paul A
Nawrot, Tim S
author_sort Bongaerts, Eva
collection PubMed
description BACKGROUND: Maternal exposure to particulate air pollution during pregnancy has been linked to multiple adverse birth outcomes causing burden of disease later in the child's life. To date, there is a paucity of data on whether or not ambient particles can both reach and cross the human placenta to exert direct effects on fetal organ systems during gestation. METHODS: In this analysis, we used maternal-perinatal and fetal samples collected within the framework of two independent studies: the ENVIRONAGE (Environmental Influences on Ageing in Early Life) birth cohort of mothers giving birth at the East-Limburg Hospital in Genk, Belgium, and the SAFeR (Scottish Advanced Fetal Research) cohort of terminated, normally progressing pregnancies among women aged 16 years and older in Aberdeen and the Grampian region, UK. From the ENVIRONAGE study, we included 60 randomly selected mother-neonate pairs, excluding all mothers who reported that they ever smoked. From the SAFeR study, we included 36 fetuses of gestational age 7–20 weeks with cotinine concentrations indicative of non-smoking status. We used white light generation under femtosecond pulsed illumination to detect black carbon particles in samples collected at the maternal-fetal interface. We did appropriate validation experiments of all samples to confirm the carbonaceous nature of the identified particles. FINDINGS: We found evidence of the presence of black carbon particles in cord blood, confirming the ability of these particles to cross the placenta and enter the fetal circulation system. We also found a strong correlation (r ≥0·50; p<0·0001) between the maternal-perinatal particle load (in maternal blood [n=60], term placenta [n=60], and cord blood [n=60]) and residential ambient black carbon exposure during pregnancy. Additionally, we found the presence of black carbon particles in first and second trimester tissues (fetal liver [n=36], lung [n=36], and brain [n=14]) of electively terminated and normally progressing pregnancies from an independent study. INTERPRETATION: We found that maternally inhaled carbonaceous air pollution particles can cross the placenta and then translocate into human fetal organs during gestation. These findings are especially concerning because this window of exposure is key to organ development. Further studies are needed to elucidate the mechanisms of particle translocation. FUNDING: European Research Council, Flemish Scientific Research Foundation, Kom op Tegen Kanker, UK Medical Research Council, and EU Horizon 2020.
format Online
Article
Text
id pubmed-9553674
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier B.V
record_format MEDLINE/PubMed
spelling pubmed-95536742022-10-14 Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies Bongaerts, Eva Lecante, Laetitia L Bové, Hannelore Roeffaers, Maarten B J Ameloot, Marcel Fowler, Paul A Nawrot, Tim S Lancet Planet Health Articles BACKGROUND: Maternal exposure to particulate air pollution during pregnancy has been linked to multiple adverse birth outcomes causing burden of disease later in the child's life. To date, there is a paucity of data on whether or not ambient particles can both reach and cross the human placenta to exert direct effects on fetal organ systems during gestation. METHODS: In this analysis, we used maternal-perinatal and fetal samples collected within the framework of two independent studies: the ENVIRONAGE (Environmental Influences on Ageing in Early Life) birth cohort of mothers giving birth at the East-Limburg Hospital in Genk, Belgium, and the SAFeR (Scottish Advanced Fetal Research) cohort of terminated, normally progressing pregnancies among women aged 16 years and older in Aberdeen and the Grampian region, UK. From the ENVIRONAGE study, we included 60 randomly selected mother-neonate pairs, excluding all mothers who reported that they ever smoked. From the SAFeR study, we included 36 fetuses of gestational age 7–20 weeks with cotinine concentrations indicative of non-smoking status. We used white light generation under femtosecond pulsed illumination to detect black carbon particles in samples collected at the maternal-fetal interface. We did appropriate validation experiments of all samples to confirm the carbonaceous nature of the identified particles. FINDINGS: We found evidence of the presence of black carbon particles in cord blood, confirming the ability of these particles to cross the placenta and enter the fetal circulation system. We also found a strong correlation (r ≥0·50; p<0·0001) between the maternal-perinatal particle load (in maternal blood [n=60], term placenta [n=60], and cord blood [n=60]) and residential ambient black carbon exposure during pregnancy. Additionally, we found the presence of black carbon particles in first and second trimester tissues (fetal liver [n=36], lung [n=36], and brain [n=14]) of electively terminated and normally progressing pregnancies from an independent study. INTERPRETATION: We found that maternally inhaled carbonaceous air pollution particles can cross the placenta and then translocate into human fetal organs during gestation. These findings are especially concerning because this window of exposure is key to organ development. Further studies are needed to elucidate the mechanisms of particle translocation. FUNDING: European Research Council, Flemish Scientific Research Foundation, Kom op Tegen Kanker, UK Medical Research Council, and EU Horizon 2020. Elsevier B.V 2022-10-05 /pmc/articles/PMC9553674/ /pubmed/36208643 http://dx.doi.org/10.1016/S2542-5196(22)00200-5 Text en © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Articles
Bongaerts, Eva
Lecante, Laetitia L
Bové, Hannelore
Roeffaers, Maarten B J
Ameloot, Marcel
Fowler, Paul A
Nawrot, Tim S
Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies
title Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies
title_full Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies
title_fullStr Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies
title_full_unstemmed Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies
title_short Maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies
title_sort maternal exposure to ambient black carbon particles and their presence in maternal and fetal circulation and organs: an analysis of two independent population-based observational studies
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553674/
https://www.ncbi.nlm.nih.gov/pubmed/36208643
http://dx.doi.org/10.1016/S2542-5196(22)00200-5
work_keys_str_mv AT bongaertseva maternalexposuretoambientblackcarbonparticlesandtheirpresenceinmaternalandfetalcirculationandorgansananalysisoftwoindependentpopulationbasedobservationalstudies
AT lecantelaetitial maternalexposuretoambientblackcarbonparticlesandtheirpresenceinmaternalandfetalcirculationandorgansananalysisoftwoindependentpopulationbasedobservationalstudies
AT bovehannelore maternalexposuretoambientblackcarbonparticlesandtheirpresenceinmaternalandfetalcirculationandorgansananalysisoftwoindependentpopulationbasedobservationalstudies
AT roeffaersmaartenbj maternalexposuretoambientblackcarbonparticlesandtheirpresenceinmaternalandfetalcirculationandorgansananalysisoftwoindependentpopulationbasedobservationalstudies
AT amelootmarcel maternalexposuretoambientblackcarbonparticlesandtheirpresenceinmaternalandfetalcirculationandorgansananalysisoftwoindependentpopulationbasedobservationalstudies
AT fowlerpaula maternalexposuretoambientblackcarbonparticlesandtheirpresenceinmaternalandfetalcirculationandorgansananalysisoftwoindependentpopulationbasedobservationalstudies
AT nawrottims maternalexposuretoambientblackcarbonparticlesandtheirpresenceinmaternalandfetalcirculationandorgansananalysisoftwoindependentpopulationbasedobservationalstudies