Cargando…
Glucose Determination by a Single 1535 nm Pulsed Photoacoustic Technique: A Multiple Calibration for the External Factors
Photoacoustic spectroscopy has been proved to be a potential method for noninvasive blood glucose detection. We used 1535 nm pulsed laser to excite photoacoustic signal in glucose solution and then explored the influence of different glucose concentration on photoacoustic signal to analyze the sensi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553719/ https://www.ncbi.nlm.nih.gov/pubmed/36247088 http://dx.doi.org/10.1155/2022/9593843 |
Sumario: | Photoacoustic spectroscopy has been proved to be a potential method for noninvasive blood glucose detection. We used 1535 nm pulsed laser to excite photoacoustic signal in glucose solution and then explored the influence of different glucose concentration on photoacoustic signal to analyze the sensitivity of photoacoustic signal to glucose at this wavelength. We designed a simple photoacoustic cell structure, which used a focused ultrasonic transducer to receive signals, so as to reduce signal attenuation. In terms of the results, we have found that for high-concentration glucose solutions, the results have strong linearity and discrimination, and when the concentration is close to the human body level, the signal difference is not so obvious. Therefore, we explore the external factors affecting the photoacoustic signal in detail and propose a calibration method. Through calibration, the signal generated by the low-concentration glucose solution also has a good linearity. |
---|