Cargando…
Continuum limits of discrete isoperimetric problems and Wulff shapes in lattices and quasicrystal tilings
We prove discrete-to-continuum convergence of interaction energies defined on lattices in the Euclidean space (with interactions beyond nearest neighbours) to a crystalline perimeter, and we discuss the possible Wulff shapes obtainable in this way. Exploiting the “multigrid construction” of quasiper...
Autores principales: | Del Nin, Giacomo, Petrache, Mircea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553808/ https://www.ncbi.nlm.nih.gov/pubmed/36247867 http://dx.doi.org/10.1007/s00526-022-02318-0 |
Ejemplares similares
Ejemplares similares
-
Bonnesen-style Wulff isoperimetric inequality
por: Zhang, Zengle, et al.
Publicado: (2017) -
DNA origami single crystals with Wulff shapes
por: Wang, Yong, et al.
Publicado: (2021) -
Wulff construction
por: Dobrushin, Roland, et al.
Publicado: (1992) -
Sharp [Formula: see text] Law for the Minimizers of the Edge-Isoperimetric Problem on the Triangular Lattice
por: Davoli, Elisa, et al.
Publicado: (2016) -
Global Methods for Combinatorial Isoperimetric Problems
por: Harper, L H, et al.
Publicado: (2004)