Cargando…
Gradient boosting decision tree becomes more reliable than logistic regression in predicting probability for diabetes with big data
We sought to verify the reliability of machine learning (ML) in developing diabetes prediction models by utilizing big data. To this end, we compared the reliability of gradient boosting decision tree (GBDT) and logistic regression (LR) models using data obtained from the Kokuho-database of the Osak...
Autores principales: | Seto, Hiroe, Oyama, Asuka, Kitora, Shuji, Toki, Hiroshi, Yamamoto, Ryohei, Kotoku, Jun’ichi, Haga, Akihiro, Shinzawa, Maki, Yamakawa, Miyae, Fukui, Sakiko, Moriyama, Toshiki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553945/ https://www.ncbi.nlm.nih.gov/pubmed/36220875 http://dx.doi.org/10.1038/s41598-022-20149-z |
Ejemplares similares
-
Author Correction: Gradient boosting decision tree becomes more reliable than logistic regression in predicting probability for diabetes with big data
por: Seto, Hiroe, et al.
Publicado: (2022) -
Causal relations of health indices inferred statistically using the DirectLiNGAM algorithm from big data of Osaka prefecture health checkups
por: Kotoku, Jun’ichi, et al.
Publicado: (2020) -
To Clarify The Duration and Characteristics of the Continuation of Home Care for Older People With Dementia
por: Kanaya, Reiko, et al.
Publicado: (2021) -
Associations of kidney tests at medical facilities and health checkups with incidence of end-stage kidney disease: a retrospective cohort study
por: Yoshimura, Ryuichi, et al.
Publicado: (2021) -
CAN THE PUBLIC LONG-TERM CARE INSURANCE SERVICES IN JAPAN PREVENT THE DETERIORATION OF CARE LEVELS?
por: Sugiura, Aki, et al.
Publicado: (2022)