Cargando…

Detection and categorization of severe cardiac disorders based solely on heart period measurements

Cardiac disorders are common conditions associated with a high mortality rate. Due to their potential for causing serious symptoms, it is desirable to constantly monitor cardiac status using an accessible device such as a smartwatch. While electrocardiograms (ECGs) can make the detailed diagnosis of...

Descripción completa

Detalles Bibliográficos
Autores principales: Shinomoto, Shigeru, Tsubo, Yasuhiro, Marunaka, Yoshinori
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553949/
https://www.ncbi.nlm.nih.gov/pubmed/36221030
http://dx.doi.org/10.1038/s41598-022-21260-x
Descripción
Sumario:Cardiac disorders are common conditions associated with a high mortality rate. Due to their potential for causing serious symptoms, it is desirable to constantly monitor cardiac status using an accessible device such as a smartwatch. While electrocardiograms (ECGs) can make the detailed diagnosis of cardiac disorders, the examination is typically performed only once a year for each individual during health checkups, and it requires expert medical practitioners to make comprehensive judgments. Here we describe a newly developed automated system for alerting individuals about cardiac disorders solely by measuring a series of heart periods. For this purpose, we examined two metrics of heart rate variability (HRV) and analyzed 1-day ECG recordings of more than 1,000 subjects in total. We found that a metric of local variation was more efficient than conventional HRV metrics for alerting cardiac disorders, and furthermore, that a newly introduced metric of local-global variation resulted in superior capacity for discriminating between premature contraction and atrial fibrillation. Even with a 1-minute recording of heart periods, our new detection system had a diagnostic performance even better than that of the conventional analysis method applied to a 1-day recording.