Cargando…
Constitutional chromothripsis of the APC locus as a cause of genetic predisposition to colon cancer
PURPOSE: Approximately 20% of patients with clinical familial adenomatous polyposis (FAP) remain unsolved after molecular genetic analysis of the APC and other polyposis genes, suggesting additional pathomechanisms. METHODS: We applied multidimensional genomic analysis employing chromosomal microarr...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554066/ https://www.ncbi.nlm.nih.gov/pubmed/34911816 http://dx.doi.org/10.1136/jmedgenet-2021-108147 |
Sumario: | PURPOSE: Approximately 20% of patients with clinical familial adenomatous polyposis (FAP) remain unsolved after molecular genetic analysis of the APC and other polyposis genes, suggesting additional pathomechanisms. METHODS: We applied multidimensional genomic analysis employing chromosomal microarray profiling, optical mapping, long-read genome and RNA sequencing combined with FISH and standard PCR of genomic and complementary DNA to decode a patient with an attenuated FAP that had remained unsolved by Sanger sequencing and multigene panel next-generation sequencing for years. RESULTS: We identified a complex 3.9 Mb rearrangement involving 14 fragments from chromosome 5q22.1q22.3 of which three were lost, 1 reinserted into chromosome 5 and 10 inserted into chromosome 10q21.3 in a seemingly random order and orientation thus fulfilling the major criteria of chromothripsis. The rearrangement separates APC promoter 1B from the coding ORF (open reading frame) thus leading to allele-specific downregulation of APC mRNA. The rearrangement also involves three additional genes implicated in the APC–Axin–GSK3B–β-catenin signalling pathway. CONCLUSIONS: Based on comprehensive genomic analysis, we propose that constitutional chromothripsis dampening APC expression, possibly modified by additional APC–Axin–GSK3B–β-catenin pathway disruptions, underlies the patient’s clinical phenotype. The combinatorial approach we deployed provides a powerful tool set for deciphering unsolved familial polyposis and potentially other tumour syndromes and monogenic diseases. |
---|