Cargando…
Two fully automated data-driven 3D whole-breast segmentation strategies in MRI for MR-based breast density using image registration and U-Net with a focus on reproducibility
Presence of higher breast density (BD) and persistence over time are risk factors for breast cancer. A quantitatively accurate and highly reproducible BD measure that relies on precise and reproducible whole-breast segmentation is desirable. In this study, we aimed to develop a highly reproducible a...
Autores principales: | Ying, Jia, Cattell, Renee, Zhao, Tianyun, Lei, Lan, Jiang, Zhao, Hussain, Shahid M., Gao, Yi, Chow, H.-H. Sherry, Stopeck, Alison T., Thompson, Patricia A., Huang, Chuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Nature Singapore
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554077/ https://www.ncbi.nlm.nih.gov/pubmed/36219359 http://dx.doi.org/10.1186/s42492-022-00121-4 |
Ejemplares similares
-
MR-CT multi-atlas registration guided by fully automated brain structure segmentation with CNNs
por: Walluscheck, Sina, et al.
Publicado: (2022) -
Fully Convolutional DenseNet with Multiscale Context for Automated Breast Tumor Segmentation
por: Hai, Jinjin, et al.
Publicado: (2019) -
Automated segmentation of craniopharyngioma on MR images using U-Net-based deep convolutional neural network
por: Chen, Chaoyue, et al.
Publicado: (2022) -
Fully Automated Segmentation of Human Eyeball Using Three-Dimensional U-Net in T2 Magnetic Resonance Imaging
por: Yang, Jin-Ju, et al.
Publicado: (2023) -
Fully automated breast segmentation on spiral breast computed tomography images
por: Shim, Sojin, et al.
Publicado: (2022)