Cargando…
Highly efficient neuromorphic learning system of spiking neural network with multi-compartment leaky integrate-and-fire neurons
A spiking neural network (SNN) is considered a high-performance learning system that matches the digital circuits and presents higher efficiency due to the architecture and computation of spiking neurons. While implementing a SNN on a field-programmable gate array (FPGA), the gradient back-propagati...
Autores principales: | Gao, Tian, Deng, Bin, Wang, Jiang, Yi, Guosheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9554099/ https://www.ncbi.nlm.nih.gov/pubmed/36248664 http://dx.doi.org/10.3389/fnins.2022.929644 |
Ejemplares similares
-
Sharing leaky-integrate-and-fire neurons for memory-efficient spiking neural networks
por: Kim, Youngeun, et al.
Publicado: (2023) -
Reconstructing Stimuli from the Spike Times of Leaky Integrate and Fire Neurons
por: Gerwinn, Sebastian, et al.
Publicado: (2011) -
Spintronic leaky-integrate-fire spiking neurons with self-reset and winner-takes-all for neuromorphic computing
por: Wang, Di, et al.
Publicado: (2023) -
Support vector machines for spike pattern classification with a leaky integrate-and-fire neuron
por: Ambard, Maxime, et al.
Publicado: (2012) -
Linear leaky-integrate-and-fire neuron model based spiking neural networks and its mapping relationship to deep neural networks
por: Lu, Sijia, et al.
Publicado: (2022)